Lab 10 – Actors

TADS Manual

As was mentioned before, the TADS manual is available on-line in html format. The manual has already been downloaded for you into a “manual” directory. Just go to that directory, and double-click on index.htm to open the manual. By now, you probably have acquired enough expertise at using TADS that the manual will mostly make sense to you.

One thing to keep in mind when reading the manual is that TADS supports two syntax variations (inspired by the programming languages Pascal and C). You’ve been compiling your programs with the –C option, which tells the compiler that your programs use the C-like syntax I’ve been teaching you. However, the examples in the manual use the Pascal-style syntax. The differences are very small, primarily affecting the way that you set a property to a new value, and test whether two values are equal, but they are important to remember:

Pascal
C

Assignment
:=
=

Test for equality
=
==

Test for inequality
<>
!=

Characters

You’ve already learned how to populate your world with rooms and objects. But to make your game truly come alive, you’ll probably want to add other characters (“actors”) for the player to interact with.

The prospect of programming a seemingly-intelligent character may seem daunting, but for the most part, you’ll find that it just requires a combination of programming techniques that you’ve already mastered. Just like an object, an actor can be programmed to respond in certain ways to player actions, for example:

> look at Ralph

Your friend Ralph has broad shoulders and big muscles.

> push Ralph

As you lunge forward, Ralph easily sidesteps your outstretched arms and slugs you in the stomach, temporarily knocking the wind out of you.

> ask Ralph about karate

“Oh, didn’t I tell you? I’m a black belt.”

The scripting techniques from Lab 9 are also powerful tools for programming actors. For example, you can make an actor “fidget” and do something random every turn, or you can make the actor wander from room to room (using the actor’s travelTo method).

Examples

Chapter 7 of the manual has an excellent section called “Non-Player Characters” toward the end of the chapter that gives a lot of great examples. The sample programs presented here are strongly inspired by the examples in the manual, but I have simplified them considerably. It is recommended that you consult the manual for more advanced examples.

First, let’s create a simple setting for the examples:

startroom: room

 sdesc = "Lobby"

 ldesc = "You're in a large lobby, with an office to the east. A large

 receptionist's desk sits next to the office door. "

 east = office

;

office : room

 sdesc = "Office"

 ldesc = "You are in a fairly ordinary office. The exit is to the

 west. There is a small closet to the north. "

 west = startroom

 north = closet

;

closet : room

 sdesc = "Closet"

 ldesc = "You are in a closet at the north end of the office. "

 south = office

;

A “Fidget” example

receptionist: Actor

 noun = 'receptionist'

 sdesc = "receptionist"

 ldesc = "The receptionist reminds you of your third-grade teacher."

 location = startroom

 actorDesc = "A receptionist is sitting at the desk next to the door,

 watching you suspiciously. "

 script =

 {

 // Print a random fidget message when you're in the same room as

 // the receptionist

 if (self.location == Me.location)

 {

 switch(rand(5))

 {

 case 1:

 "\n\tThe receptionist sharpens some pencils. ";

 break;

 case 2:

 "\n\tThe receptionist goes through some personal mail, holding each

 letter up to the light and attempting to read the contents. ";

 break;

 case 3:

 "\n\tThe receptionist looks through the personnel files. ";

 break;

 case 4:

 "\n\tThe receptionist answers the phone and immediately puts the

 caller on hold, cackling to herself fiendishly. ";

 break;

 case 5:

 "\n\tThe receptionist shuffles some papers. ";

 break;

 }

 }

 }

;

Notice that the receptionist derives her behavior from the class Actor. Like all objects, the receptionist has a noun, location, sdesc, and ldesc property defined. All actors also have a property called actorDesc, which is printed whenever the room is described. This is not to be confused with ldesc, which is printed when the player looks directly at the actor. Typically, actorDesc describes the gist of what the actor is doing, while ldesc describes the details of the actor’s appearance.

The receptionist example also defines a simple script that works just like the examples in Lab 9. When the player is in the same room as the receptionist, a random message is printed that creates an illusion that the receptionist is fiddling with things on her desk.

Characters that follow the player

The receptionist never moves. But what if you want to create a character that follows the player around? This actually requires a fairly simple modification of the character’s script. In addition to containing several “fidgets”, the script also tests to see if the player is in a different room – if so, the character is moved into the player’s current location using the travelTo method. Because the character is referred to by a proper name, the default adesc and thedesc won’t work, so those properties need to be changed accordingly.

lloyd: Actor

 noun = 'lloyd' 'salesman'

 adjective = 'insurance'

 sdesc = "Lloyd"

 adesc = "Lloyd"

 thedesc = "Lloyd"

 ldesc = "Lloyd has jet-black hair and thick glasses. "

 actorDesc = "An insurance salesman, with the name \"Lloyd\" clearly

 emblazoned on his nametag, is holding a clipboard and eyeing you

 intently. "

 location = startroom

 script =

 {

 if (self.location == Me.location)

 {

 switch(rand(3))

 {

 case 1:

 "\n\tLloyd hums one of his favorite insurance songs. ";

 break;

 case 2:

 "\n\tLloyd scribbles something on his clipboard. ";

 break;

 case 3:

 "\n\tLloyd idly fingers his nametag. ";

 break;

 }

 }

 else

 {

 self.travelTo(Me.location);

 }

 }

;

As you may recall, the game “The Plant” had a character (Mr. Teeterwaller) who followed you around much like this. Of course, Mr. Teeterwaller was a bit more complex. In a real game, you typically extend the script to make the character do special things in certain locations.

Characters that move along a fixed path

What if you want to program a character that moves around of its own accord? Again, it just requires a modification of the script. As an example, let’s consider the case of a cleaning robot that moves along a fixed path, from the closet to the office to the lobby, then back to the office, and so on.

The simplest way to program this is using lists (see Lab 9 for an introduction to lists). Of course, you could program this without relying on lists, but the resulting program would be a bit longer.

vacRobot: Actor

 sdesc = "cleaning robot"

 noun = 'robot'

 adjective = 'cleaning'

 ldesc = "The robot has a bright metallic sheen and numerous cleaning

 attachments. "

 actorDesc = "A cleaning robot darts from corner to corner in search of

 dust particles. "

 tracklist = [closet office startroom office]

 trackpos = 0

 script =

 {

 // Move the robot along his path

 self.trackpos = self.trackpos + 1;

 // Loop around if we've reached the end of the tracklist

 if (self.trackpos > length(self.tracklist))

 {

 self.trackpos = 1;

 }

 self.travelTo(tracklist[self.trackpos]);

 }

 sayLeaving = "\n\tThe cleaning robot rolls out of the room. "

 sayArriving = "\n\tThe cleaning robot rolls into the room and starts

 noisily moving around the room vacuuming and dusting. ";

;

tracklist is a property we’ve created to store a list of rooms that the robot traverses. Similarly, trackpos is a property we’ve created to help us keep track of where along the path the robot is. When we get to the end of the list, we start over.

Actors also have default messages that are printed when they enter and leave the area where the player is. These messages can be modified by overriding the actor’s sayLeaving and sayArriving properties.

Following a character

Imagine the player is hanging out somewhere when the cleaning robot rolls into the room, and then on the next turn, rolls out of the room. A reasonable thing to type would be “follow robot”, but all the player would get would be the response “I don’t see any robot here.” Since the robot is gone, TADS can’t dispatch the verb “follow” to it!

Fortunately, there is a simple workaround to make the “follow” command work. We create a special, invisible object called a follower for the cleaning robot. When the robot leaves a room, this invisible follower stays behind in the room. The follower responds to the same nouns and adjectives that the robot does, so when the player types “follow robot”, the follow verb is dispatched to the follower, which knows where the robot went, and the player is sent in that direction.

This may sound confusing, but it’s surprisingly easy to program. Here’s how you create an invisible follower object for the cleaning robot:

vacRobotFollower : follower

 noun = 'robot'

 adjective = 'cleaning'

 myactor = vacRobot

;

The myactor property is very key. It tells the follower object which actor it is following. Similarly, you must go back to the cleaning robot object, and add a myfollower property that states which object is following it:

myfollower = vacRobotFollower

Asking characters about topics

Commands of the form “ask character about topic” occur so frequently, that TADS includes a special method for actors called askWord that allows you to easily handle all your character’s responses. This method takes two inputs: the first is the word that the player is asking about, the second is a list of other words that the player typed. You will rarely use the list, but it is available to you just in case you need contextual clues to decipher the question.

If the actor knows something about the word, you must print his response, and return true. Otherwise, return nil. The switch statement is the easiest way to program this, although you could also use a long chain of if…else clauses. In this next example, we will be taking advantage of switch’s capabilities of combining multiple cases. Notice that since we return true at the end of each case, we don’t need to issue the break command as we usually do with switch statements.

fortuneteller : Actor

 sdesc = "fortuneteller"

 noun = 'fortuneteller' 'teller'

 adjective = 'fortune'

 ldesc = "The fortuneteller is an old man with a gray beard. He

 is sitting cross-legged in the corner. "

 actorDesc = "A fortuneteller is here, waiting to tell you the future

 about anyone you ask about. "

 location = closet

 askWord(word, lst) =

 {

 switch (word)

 {

 case 'lloyd':

 case 'salesman':

 "\"Lloyd is a most annoying salesman. He will be killed by an

 irate customer before the year is out.\" ";

 return true;

 case 'robot':

 "\"The cleaning robot will develop a short circuit tomorrow

 afternoon.\" ";

 return true;

 case 'receptionist':

 "\"The receptionist will have heartburn later tonight.\" ";

 return true;

 case 'teller':

 case 'fortuneteller':

 case 'himself':

 "\"I was trained at an accredited forecasting college.\" ";

 return true;

 case 'elvis':

 "\"Elvis is dead.\" ";

 return true;

 }

 return nil;

 }

 disavow = "\"The future of that is not clear to me.\" "

;

As you see from this example, we can also override the disavow property to control what the character says when you ask about something not handled by the askWord method. The default is for the character to say, “I don’t know anything about that.”

Most of the words that we can ask the fortuneteller about are nouns associated with objects in the game (e.g., ‘lloyd’, ‘salesman’, ‘robot’, ‘receptionist’, ‘teller’, and ‘fortuneteller’.) But two of the words are not associated with any objects in the game (‘himself’ and ‘Elvis’). This poses a problem -- those two words won’t be recognized by the parser!

To make the parser recognize these words, we must add an object, any object, that uses these words in its noun property. So let’s create one:

conversationTopics : thing

 noun = 'elvis' 'himself'

;

Now those words will be recognized and our askWord method will work as we expect it to.

Starting the scripts

As was discussed in Lab 9, you have to explicitly start the scripts or they will not work. For most of the examples in Lab 9, we started the script when the player entered the relevant room, and ended the script when the player left the room.

Another option for actors is to start their respective scripts at the beginning of the game, and let them continue to run, even when the player isn’t around. This is particularly important for characters that wander around. So how do you do something at the beginning of the game?

The game is initialized in a function init contained in std.t, one of the files you include at the beginning of all your labs. Unlike adv.t, which needs to be modified with caution, std.t contains a lot of code that you’re expected to modify. In fact, most games make their own copy of std.t (typically giving it a different name to avoid confusion) and modify that.

So for this lab, I made a copy of std.t and named it stdlab10.t. Then I added the following lines to the init function:

 // put introductory text here

 "Welcome to Lab 10.\b ";

 // Start all the actor scripts

 notify(receptionist, &script, 0);

 notify(lloyd, &script, 0);

 notify(vacRobot, &script, 0);

Then, I changed the first two lines of lab10.t to:

#include <adv.t>

#include "stdlab10.t"

Other commonly modified functions/objects from std.t are:

· die()

· scoreRank()

· pardon()

· version.sdesc

Things to Try

Just as with objects, there are many ways you can override methods for an actor to create specialized behavior. There are simply too many possibilities to give examples for all of them. But here are some ideas of common ways that actors tend to be customized in games. Try some or all of these techniques in your own project.

· > tell Ralph about hamburger (to program something like this, override the verDoTellAbout and doTellAbout methods for the actor).

· > give hamburger to Ralph (to program something like this, override the ioGiveTo method for Ralph).

· > take french fries from Ralph (to program something like this, override the verGrab method for Ralph).

Coming Soon

In TADS games, you can also issue commands to other characters in an attempt to persuade them to do something. Next lab, we’ll look at how this is programmed.

PAGE
7

