

Roger Firth’s

?

INFORM 6: FREQUENTLY ASKED QUESTIONS

PDF version of the HTML document found at Roger Firth’s IF pages

http://www.firthworks.com/roger/informfaq/index.html

Introduction

 3

Introduction

You're reading a set of answers to Frequently Asked Questions about the Inform
programming language, intended especially to help those who are novices in this arena.
Unless you are planning to write a piece of Interactive Fiction -- a text adventure game --
using Inform, you might as well go right to the Ifaq for more general assistance.

Note that the questions here are all about Inform 6. There is almost nothing in these pages
about Inform 7 -- Graham's radical new approach to IF authorship.

This FAQ aims to address topics which commonly cause confusion among newcomers.
However, you shouldn't set your expectations too high; it isn't an Inform tutorial, it pre-
supposes that you've got a copy of the Inform Designer's Manual and it assumes at least a
little knowledge of computer programming. Very rarely will these answers give you the full
story. Generally, they're designed as introductory tasters, providing just enough information
to illustrate the general principles, and to point you towards the appropriate material in the
definitive Designer's Manual.

There are other good sources: make sure that you know about the Inform Beginner's Guide
(available, like the Designer's Manual, from the Inform website), and about these more
general FAQ pages:

• The Ifaq gives a very brief overview: Interactive Fiction (IF) from ten thousand feet;
• The ifwiki FAQ covers much the same ground, but in greater depth;
• The FAQ for the rec.arts.int-fiction (RAIF) Usenet newsgroup covers the authorship of IF

in many systems, not just Inform;

Also, these excellent Q&A sites may resolve your more detailed or sophisticated Inform
concerns:

• Jim Fisher's Inform Guide;
• Marnie Parker's Inform Primer and Programming Tips;
• Andrew Plotkin's Handy Inform Tricks;
• David Fisher's summary of Past RAIF topics;
• John Escobedo's record of Inform How Do I ...? postings on RAIF.

Finally, there's also a very old Inform FAQ which relates to Inform 5 and DM2. None of the
downloads work and some of the information is unreliable, life having moved on since 1995;
tread carefully here.

Many people helped in the creation of this document, sometimes unwittingly; my thanks for
all of the assistance. The Inform FAQ is copyright of and maintained by Roger Firth, who is
always pleased to receive your comments and contributions. First posted in July 2001 and
last updated: 24 May 2006. This PDF version was concocted by Sonja Kesserich, 28 June
2006.

http://www.plover.net/~textfire/raiffaq/ifaq/
http://www.inform-fiction.org/manual/
http://www.plover.net/~textfire/raiffaq/ifaq/
http://www.ifwiki.org/index.php/FAQ
http://www.plover.net/~textfire/raiffaq/
http://groups.google.com/groups?group=rec.arts.int-fiction
http://www.onyxring.com/informguide.asp
http://members.aol.com/doepage/doefaq.htm
http://members.aol.com/doepage/infotips.htm
http://www.eblong.com/zarf/inftricks/
http://www.ifwiki.org/index.php/Past_raif_topics
http://www.citycafe.com/if/howto/
http://www.doggysoft.co.uk/inform/code/infaq.html
mailto:roger@firthworks.com
mailto:sk@moth.jazztel.es

 Contents

 5

Contents

Introduction 3

Contents 5

1 · Setting the Scene 9

So, what is Inform? 9
Where do I begin? 10
How is Inform related to Infocom? 10
When did Inform appear? 10
What's the best way to learn Inform? 11

Tips on getting acquainted with the Designer's Manual
Does anybody teach Inform? 12
How popular is Inform? 12

IF Comp statistics
Pros and cons of the Inform system

Where are all these games you mention? 13
Can I play Inform games on my handheld? 14
I've seen Inform games played on the web... can I do that? 14
I'm blind -- is there any way I can play Inform games? 14

2 · Preparing to program 15

What do the various file extensions like 'Z5' signify? 15
Where should I store the various Inform files? 15

Recommended folder settings (PC and Mac downloads)
How do I compile on a PC running XP? 17
How do I compile on a Mac running OS X? 18
What can I expect when I try to compile my program? 23

Common errors in your code
Why does my game start off so big? 24

How large is it likely to grow
How do I change the compiler settings? 25

ICL files, switches, path variables and memory settings
Does it matter how I structure my game file? 29

Basic layout of an Inform source file
Does it matter how I organize my object definitions? 30

Basic structure of an object definition
Does it matter how I lay out my code? 30

Tips on readability of source code
How does a game begin? 31

The Initialise() entry point routine
Banners
Waiting for a keypress
Equipping and customising the Player Character
Starting daemons and timers
Setting lookmode
Restoring a previous game

How does a game end? 37
Using deadflag
DeathMessage(), PrintRank() and Amusing()

Is there a good Integrated Development Environment? 38
How do I use Modules? 39
Can I write a game in French? 39

Four steps to write games in other languages than English

Contents

 6

3 · Learning The Lingo 41

When are upper and lower case differentiated? 41
When do I use commas (,) and semicolons (;)? 41
When do I use apostrophes (') and quotes (")? 43
What does a string "..." as a statement by itself mean? 43

The implicit return warning
Assigning strings to variables

What are the circumflex (^) and tilde (~) characters used for? 44
How do I concatenate strings? 45
What's the difference between MyRoutine and MyRoutine()? 46

Example: PartOfDay() routine
What's the difference between a Directive and a Statement? 47
What's the difference between Include and #Include? 47

4 · Dabbling in Data 49

How do constants and variables differ? 49
What can be stored in a variable? 49

Inform's number range warning
What about fractions and decimals? 50
How do global and local variables differ? 50
What does an array provide? 50
What's an 'unsigned' number? 51

Signed and unsigned comparison
What exactly are 'true' and 'false'? 52
How do I return data values from a routine? 53
Where do 'random' numbers come from? 55

5 · Operating on Objects 59

Is a 'room' a special sort of object? 59
How does Inform distinguish nouns from adjectives? 59
When should I use scenery/static/concealed attributes? 59
How can I tell that one object is 'within' another? 60

The object tree
Moving objects around

How do I get rid of an object in mid-game? 61
What are the various 'description' properties for? 62
How are plural objects managed? 65

Plural types and examples:
Gunpowder; Instructions; String of pearls; Sticks of dynamite;
Gold coins; Fuses; Matches; Cage of birds

Why do my pronouns keep changing? 71
The MANUAL_PRONOUNS constant

How do I define a new object property? 72
Common versus local properties
Turning properties into arrays

How do I use my new object property? 73
Routine or string? doesn't matter

Do I need to understand private properties? 75
How do I define a new object attribute? 75
How can I use individual properties as attributes? 75
What does class inheritance do for me? 77
When is a Dynamic class useful? 78
How can I reconfigure the Player Character (PC)? 82
Why does my game crash when I use move in an objectloop? 83

objectloop formats
Can I loop through all of an object's dependents? 84

 Contents

 7

6 · Verbal Versatility 87
How do I define a new verb? 87

Examples: SMILE and FROWN
When should I use before/react_before properties? 87

Actions stages (simplified)
Where do life and orders fit in? 88
Surely the syntax of these properties is a little odd? 89
How do I change an existing verb? 90

Example: WRAP and FOLD
Extend directive
Separating actions: DRINK, SWALLOW, SIP

Can I remove an existing verb? 92
Why are actions labelled Group 1, Group 2 or Group 3? 93

Changing Group 3 actions into Group 2 actions
Example: CUT

How do I detect the player entering a room, or trying to leave? 96
Room object's before and after properties
Sequence of library actions triggered by movement
Example: Two tell-tale room classes

Where have I been? 98
Knowing about recently-visited rooms
Enabling the player to jump to a previous-visited room

How can I parse a number? 100
Example: Setting course to 180 (or cardinal directions)
Example: the Steersman NPC

Which action is triggered by each verb? 102
Can I distinguish SIT ON BED from LIE ON BED? 103
Which verb did the player use? 106
How do 'meta' verbs work? 108

7 · Bothered By Bugs 109

What can I expect when I run my first program? 109
Help! What's wrong with my code? 109
Why do I get spurious 0s and 1s in my printout? 111
What's the difference between Squared(x) and (Squared) x? 112

The print rule trick
How can I make the debugging process easier? 112

Automated replay
Object inspection and manipulation

Why does my game mention "a apple"? 113
What were Vile Zero Errors From Hell? 113
I've found an Inform problem -- what should I do? 114

8 · History And Hereafter 115

Where's this Archive that's mentioned so often? 115
Glulx? What's that all about? 116
Who, or what, is Platypus? 117

9 · Worldly Woes (advanced) 119

How can I get rid of those damn walls? 119
How to LOOK [TO THE] NORTH

How can I embed object details in a room's description? 120
Is it possible to disable TAKE ALL? 121
Can I avoid printing "(which is empty)" after a container? 122
Can I avoid printing "(the objectname)" after certain commands? 123
How does the list-maker work? 124

Inventory style examples
Overriding the prevailing style of listing

Could you explain what "in scope" means? 127
What's the easiest way to shine light everywhere? 133
Why is water so difficult to model? 134

Example: Water and Bucket classes, FILL, POUR and EMPTY
How does everybody know where the north is? 137

An alternative approach: GO AHEAD, TURN RIGHT, etc.

Contents

 8

10 · Inside Information (advanced) 141

What's a Library entry point? 141
Where are all those Library files used? 141

Overview of how a game runs
Can I use Inform without the standard Library files? 142
What's all this stuff about message-passing? 145

Sending messages to Objects, Classes, Routines and Strings
What actually happens at the start and end of each turn? 147
What's the difference between a Daemon and a Timer? 147

Example: timed bomb inside a box
How to control the order in which daemons run

What's the difference between a Daemon and an each_turn property? 149
Why don't my daemons run at the start of a game? 149
How do I compile a game as Version 3? 151
Can I combine a game and an interpreter in a single file? 151
Could you explain how character sets are handled? 151

Character encoding
The ZSCII character set
Allocating extra characters using the C switch
Allocating extra characters using the Zcharacter directive
Reading your source file
Printing ZSCII characters
Printing Unicode characters
String packing
Runtime issues

Little-used features: what's a low string? 164
Little-used features: what's an abbreviation? 165
Little-used features: what's a fake action? 166
How is the parse array structured? 167
How are the standard print rules implemented? 170

11 · Tips and Techniques (advanced) 173

What's the associativity of ~/~~? 173
How do I write an XOR function? 173
Can I use expressions in <...>? 173
Is there a Library routine to print direction names? 173
Can I introduce a short time delay? 174

Z-Machine and Glulx solutions
Why can't I address "Dr.Jekyll" or "Mr.Hyde"? 175
How do I right-align printed numbers? 175
Can an 'achieved task' have a negative score? 176
Are the points awarded by a 'scored' object adjustable? 178
ChooseObjects() is messing up TAKE ALL. What can I do? 179
Can ChooseObjects() tell if it's evaluating noun or second? 180
How can I change the size of a string or table array? 182
Can I prompt the player to key in some information? 183
How do I put single characters into the dictionary? 185
Why doesn't 'my' work in a name property? 185
How can the player input numbers bigger than 10000? 186

 1 · Setting the Scene

 9

1 · Setting the Scene

So, what is Inform?

From the Introduction to the Inform Designer's Manual: "Inform is a system for creating
adventure games. It translates an author's textual description into a simulated world which
can be explored by readers using almost any computer, with the aid of an interpreter
program."

In its simplest possible form, the "author's textual description" looks rather like this:

 Constant Story "RUINS";
 Constant Headline "^An Interactive Worked Example^
 Copyright (c) 2001 by Angela M. Horns.^";

 Include "Parser";
 Include "VerbLib";

 Object Forest "~Great Plaza~"
 with description
 "Or so your notes call this low escarpment of limestone,
 but the rainforest has claimed it back. Dark olive
 trees crowd in on all sides, the air steams with the
 mist of a warm recent rain, midges hang in the air.
 ~Structure 10~ is a shambles of masonry which might
 once have been a burial pyramid, and little survives
 except stone-cut steps leading down into darkness below.",
 has light;

 [Initialise;
 location = Forest;
 "^^^Days of searching, days of thirsty hacking through the briars of
 the forest, but at last your patience was rewarded. A discovery!^";
];

 Include "Grammar";

and the "explored ... with an interpreter program" part might be along these lines:

1 · Setting the Scene

 10

Needless to say, real adventure games are much more exciting -- and much more complex --
than our tiny example. Nevertheless, almost all games look more or less like this, and
behave more or less in this manner.

Where do I begin?

Inform is the creation of Graham Nelson (who by day teaches mathematics at Oxford
University), and you can't do better than start at his web
site. In particular, read the answers to some background
questions that you may have, get details of the files that
you'll need to download, and find links to other Inform web
sites.

How is Inform related to Infocom?

Infocom was the company, formed in 1979 by ex-MIT
students to capitalize on the popularity of Adventure and
its imitators, which over the following ten years created
more than thirty text adventure games; many of those
are highly regarded, and still widely played today.
Infocom's games were written in a specially-devised
Zork Implementation Language (ZIL) and compiled by
Zilch into Z-code. A Z-code game could be played using
a Z-machine interpreter program, and many interpreters
were written to run on the wide range of hobbyist
microcomputers then in vogue.

Eventually, text adventures fell from public favour,
Infocom disappeared into Activision, and the
specifications of ZIL and the Z-machine were lost. All
that remained in general circulation were the Z-code
games themselves. In an astonishing feat of reverse-
engineering, a group of enthusiasts known as the
Infocom Task Force managed in the early 1990s to
deduce the architecture of the Z-machine by inspecting
the contents of these binary (non-text) files, and they
documented their researches in the Z-machine
Standards Document.

That specification made it possible to create new Z-machine interpreters, and thus to play
the original games on computers which hadn't existed when Infocom was around. There was,
however, no way to create new games for the Z-machine until Graham devised Inform.
Although the Inform language is, at least superficially, nothing like ZIL, and the Inform
compiler is quite different from Zilch, nevertheless the outcome of compiling a source game
is the same in both cases -- a file of Z-code which can be played on any Z-machine
interpreter. Many Inform programmers view this, the commonality of Z-code between their
games and the original Infocom masterpieces, as one of the coolest features of the system.

When did Inform appear?

The first version of Inform appeared in 1993, and the system has been growing steadily in
capability and usage ever since.

For updates on what's new in
Inform, visit Roger Firth's
Informary

http://www.firthworks.com/roger/informary/index.html
http://www.inform-fiction.org/introduction/
http://www.inform-fiction.org/introduction/
http://www.inform-fiction.org/software/
http://www.inform-fiction.org/software/
http://www.inform-fiction.org/links/
http://www.inform-fiction.org/links/
http://www.inform-fiction.org/zmachine/standards/
http://www.inform-fiction.org/zmachine/standards/

 1 · Setting the Scene

 11

Looking at this (slightly simplified) chart, you
can see how Inform initially evolved quite
rapidly, running through five major versions
in its first three years. Some of those early
versions were fairly primitive; not until
Version 6 did it settle into a form closely
resembling the system that we use today.

In fact, although the core system didn't
change at all between 1999 and 2004, Inform
enthusiasts continue to find ways of
extending and enhancing that core using a
wide variety of techniques. Once you've
mastered the basics of Inform, be sure to
look at the many contributed extensions;
also, if you should come across a possible
bug in the compiler or the library, here's a list
of well-known problems.

Version 7 marks another major leap in
Inform's evolution. Rather than being a serial
development of what has gone before,
Inform 7 offers instead a radical new
approach to IF authorship. Stories are
created using a simplified form of English;
this is automatically processed behind the

scenes into a Version 6 game, which is then compiled and run. The Version 6 code is not
intended to be read by the author, and depends on a heavily-modified version of the 6/10
library files.

What's the best way to learn Inform?

You have a choice! If you're an experienced programmer, and especially if you're already
familiar with other IF design systems, you can follow the seven-stage training plan:

Skim the Inform Designer's Manual.
Try some very simple examples of your own.
Read the Inform Designer's Manual.
Look at one or two tutorials.
Study the Inform Designer's Manual.
Write something slightly more complex.
Consult the Inform Designer's Manual.

What this tells you is: the Fourth Edition of the Inform Designer's Manual -- colloquially
known as the DM4 -- is far and away the best source of reliable detailed information about
programming in Inform. It's well-written, well-formatted, well-indexed; it's, well, a splendid
document whose pages you can't know too thoroughly. Even the "Natural Language" chapter
-- aimed primarily at translating Inform into languages other than English -- is worth your
while reading.

Version Date Compiler Library

Inform 1 Apr 1993

Inform 2 ??? 1993

Inform 3 Nov 1993

Inform 4 Jan 1994

Inform 5 Jun 1994
...

Jun 1995

Inform 6 Apr 1996
May 1996
May 1996
Sep 1996
Sep 1996

Dec 1996
Jan 1997
Mar 1997
Apr 1997
May 1997
Aug 1997
Sep 1997
Mar 1998

Dec 1998
Apr 1999
Nov 1999

Feb 2004

6.01
6.02
6.03
6.04
6.05

6.10
6.11
6.12
6.13
-
-

6.14
6.15

6.20
6.21
-

6.30

6/1
-
-

6/2
-

6/3
6/4
-
-

6/5
6/6
6/7
-

6/8
6/9
6/10

6/11

Inform 7 Apr 2006 6.31 6/10N

For a fascinating account of its evolution, see
the final section of the Inform Technical Manual

Should you need them, the Archive holds the
non-current versions of the Inform 6 Library
and some versions of the Compiler. If you have
source for any of the missing Compilers (6.01,
6.02, 6.04, 6.05, 6.11, 6.12), please upload it
to the Archive

For when you need just to look up
a syntax detail, Roger Firth's
Inform in four minutes and InfoLib
at your fingertips quick reference
summaries may be helpful

http://www.inform-fiction.org/source/tm/
http://mirror.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXold.html
http://mirror.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XsourceXold.html
http://www.inform-fiction.org/extensions/
http://www.inform-fiction.org/patches/
http://www.firthworks.com/roger/downloads/informqr.zip
http://www.firthworks.com/roger/downloads/inflibqr.zip
http://www.firthworks.com/roger/downloads/inflibqr.zip

1 · Setting the Scene

 12

On the other hand, if this whole programming scene is new to you, then you'll probably be
better off starting with the Inform Beginner's Guide. This takes a much more leisurely stroll
through Inform, dwelling lovingly on the basic principles, while completely omitting much of
the advanced stuff. Written as a tutorial, it introduces Inform through the design of three
simple games; it's mean to be read straight through, not used as a reference manual -- for
that, you'll still want to turn to the DM4.

When you first read the DM4, especially if you don't have much programming experience, it
can all seem rather daunting. In your early days, the most important sections to know are:

§1.1 to §1.12 (but just browse quickly to get a feel for the language);
§2.1 "Directives", §2.2 "Constants" and §2.3 "Global variables";
§3.1 "Objects", §3.2 "The object tree" and §3.3 "Setting up the tree";
§4 "'Ruins' begun";
§8 "Places and scenery" and
§9 "Directions and the map".

Note that the first chapter of the DM4 gives a complete and detailed definition of the Inform
Language, while the following four chapters focus on the Inform Library. The language
itself is not very different from other programming languages; what makes Inform special is
the Library, which transforms your general-purpose computer into a dedicated adventure
machine. So, to start with, don't worry about understanding all 70 pages in the first chapter;
skip past things which seem difficult, and come back to them later. As soon as you can,
move on to Chapter II -- Introduction to Designing -- which is where the Library comes into
play and adventure games begin to happen.

You can download both the DM4 (2.9Mb PDF file) and the IBG (1.4Mb PDF file) for free from
the Inform website.

Does anybody teach Inform?

A few US academics have run courses. Nick Montfort at the University of Pennsylvania has
sample syllabi for a semester-long Workshop in Interactive Fiction course and for a similar
one-month intensive course with some different selections. Dennis Jerz runs IF classes at
Seton Hill University, also in Pennsylvania (as he did in his previous position at the University
of Wisconsin-Eau Claire). Ken Forbus at the Northwestern University in Illinois taught
Computer Game Design in Spring 2003, Stephen Ramsay had a Fall 2003 class on Digital
Narratives at the University of Georgia, and Bruce Maxim at the University of Michigan–
Dearborn had a Fall 2004 class on Computer Game Design and Implementation with some
Inform content. Not a vast range, maybe, but it certainly adds up to a little academic
respectability.

Further afield, Inform figured on a Summer 2004 class on Computer Game Design in New
Zealand, and is listed in a public course schedule for the good folks of Saugus,
Massachusetts.

How popular is Inform?

It's extremely difficult to know how many people actually use the system. In very round
figures, about 800 Inform games have been published, by perhaps 450 different authors.
Making some allowance for those who have finished but not published a game, who have one
or more unfinished games in progress, or who have dabbled in Inform without producing
anything significant... and it's still hard to believe that many more than a thousand people
have ever seriously tried to compile an Inform file. We're not exactly a large community.

http://www.inform-fiction.org/manual/download_dm4.html
http://www.inform-fiction.org/manual/download_ibg.html
http://www.upenn.edu/
http://www.nickm.com/if/workshop_syllabus.txt
http://www.nickm.com/if/one_month_syllabus.txt
http://jerz.setonhill.edu/
http://www.uwec.edu/
http://www.uwec.edu/
http://www.northwestern.edu/
http://www.cs.northwestern.edu/%7Eforbus/CS370/
http://cantor.english.uga.edu/cocoon/classes/engl4890.html
http://cantor.english.uga.edu/cocoon/classes/engl4890.html
http://www.uga.edu/
http://www.umd.umich.edu/
http://www.umd.umich.edu/
http://www.engin.umd.umich.edu/CIS/course.des/cis587.html
http://cosc360.otago.ac.nz/
http://www.saugus.net/Local/Ads/Training/SeniorCenter/
http://www.saugus.net/Local/Ads/Training/SeniorCenter/

 1 · Setting the Scene

 13

Having said that, Inform is the most popular of today's industrial-strength IF languages, at
least using a few simplistic measures. There have been around 24,000 rec.arts.int-fiction
postings with "Inform" in the subject line, as against some 10,000 mentioning "TADS". The
Archive holds more than twice as many Inform games as those created using TADS, and the
Inform games seem to be downloaded more frequently. In the annual IF Competition, Inform
has always accounted for the largest batch of entries, with TADS coming second, and the
lesser systems battling over third place.

Although Inform games tend to fare a little better than TADS in the competition, this doesn't
mean that TADS is an inferior system -- technically the new TADS 3 is almost certainly better
than Inform in many ways -- but rather that Inform has in recent years proven more popular
with authors. Some of the reasons for this are probably:

the documentation: the Inform Designer's Manual is a remarkable work, and the more
modest Inform Beginner's Guide complements it nicely;
accessibility: Inform code is apparently more readable and less intimidating on first
acquaintance;
the coolness factor: writing games that run on the same interpreters as Infocom's;
portability: the Z-machine is supported in more environments, including -- crucially -- on
PalmOS handhelds;
the addons: well over 100 Library extensions contributed to the Archive by the Inform
community;
techie features such as inbuilt assembly language support and the simplicity of replacing
Library functions;
success breeds success. Initially, Inform attracted a large user base because it was freely
available, because it was being very actively developed, and because of the quality of games
like "Curses". TADS was at that time shareware, and in somewhat of a state of development
limbo; neither of these is still true, but Inform's momentum -- having become the more
'visible' system -- has helped to keep it in the lead.

Which isn't to say that Inform couldn't be improved. There are justifiable complaints about:

the syntax: initially confusing, both to non-programmers and those experienced in other
programming languages;
the Library: insufficiently modular, difficult to extend, contains too many special cases;
the Z-machine: less cool than frost-bitten, the ageing Z-machine's inadequacies are only
partially overcome by Glulx;
timidity: Graham's hesitancy about making changes which, while clearly desirable, would be
incompatible with existing code.

However, don't let such niggles put you off: you'll find -- along with those hundreds of other
users -- that Inform's good points far outweight any downside.

Where are all these games you mention?

In the 'games' section of the Archive. You'll find source games in
...games/source/inform, compiled (ready to play) games in
...games/zcode and ...games/glulx.

Carl Muckenhoupt's
invaluable Baf's Guide to
the IF Archive currently
lists (and rates) hundreds
Inform games.

http://www.ifcomp.org/
http://www.firthworks.com/roger/informfaq/hh.html#1
http://www.firthworks.com/roger/informfaq/hh.html#2
http://www.wurb.com/if/devsys/3
http://www.wurb.com/if/devsys/3
http://www.firthworks.com/roger/informfaq/hh.html#1
http://www.ifarchive.org/indexes/if-archiveXgamesXsourceXinform.html
http://www.ifarchive.org/indexes/if-archiveXgamesXzcode.html
http://www.ifarchive.org/indexes/if-archiveXgamesXglulx.html

1 · Setting the Scene

 14

Michael Baum's excellent Z-code catalog, also in the Archive at ...info, stops in mid-1999.
Here's a -- certainly imperfect -- list of about 500 Inform games published between then and
end-2003 (thanks to XYZZYnews for the raw data).

Can I play Inform games on my handheld?

Yes! Handheld computing and text adventures seem to be especially well-suited, and there
are Z-code interpreters for many small machines.

I've seen Inform games played on the web... can I do that?

Sure: all that you need is a special interpreter program, written in the Java language, which
runs in a web browser. You don't have to do anything special to the game, other than upload
it -- along with a copy of the Java applet -- to your web site. Here's a starter kit, comprising
the applet, a template web page, and a copy of Roger Firth's demonstration game "Cloak of
Darkness".

I'm blind -- is there any way I can play Inform games?

I think so. A helpful guy named Warren Scott Dillman has on ongoing IF text-to-speech
project, which includes an adapted version of David Kinder's Windows Frotz 2002. If you
come across other aids to blind Inform gamers, please let me know.

http://www.ifarchive.org/indexes/if-archiveXinfo.html
http://www.firthworks.com/roger/informfaq/games.html
http://www.xyzzynews.com/
http://www.inform-fiction.org/zmachine/interpreters.html
http://www.firthworks.com/roger/downloads/ZPlet.zip
http://www.binaryrevelations.com/iftts/

 2 · Preparing to program

 15

2 · Preparing to program

What do the various file extensions like 'Z5' signify?

In an operating environment like the PC where filename extensions
are widely used, you're likely to come across some of these values:

Extension Used for

.INF Files containing Inform source programs.

.H 'Header' files containing Inform source statements which are intended to be
#Included into .INF files.

.Z5

.Z8
The vast majority of today's compiled Z-machine games: .Z5 (Infocom's
'advanced' design) is normal unless the game size exceeds 256Kb, whereupon .Z8
permits an increase to 512Kb.

.Z3

.Z6
Infrequent circumstances: .Z3 (Infocom's 'standard' design) is nowadays created
only to suit some restricted-memory interpreters which cannot handle .Z5 files;
.Z6 (Infocom's 'graphical' design) lacks the development tools and interpreter
support for widespread acceptance.

.DAT Infocom games. Note that interpreters use information from within the file, rather
than the file's extension, to determine its version; any Z-machine interpreter
should be able to play a .DAT file.

.ULX Inform games which have been compiled to run on the Glulx virtual machine.

.BLB Blorb files: a packaged collection of sounds and/or images which can be invoked
from a .Z6 or .ULX game.

.SAV Preserving a game's state, created by the SAVE verb.

.SCR Keeping a copy of everything displayed during a game, created by the SCRIPT ON
verb.

.REC Keeping a copy of every command typed while debugging a game, created by the
RECORDING ON verb and re-used by the REPLAY verb.

Where should I store the various Inform files?

When you start programming in Inform, you need to download various program and data
files, and store them in some convenient arrangement of folders or directories. How you do
that is entirely up to you; some people simply place everything in a single folder, but we
think that too easily becomes confusing. We like to keep the 'system' files -- the Library,
compiler and interpreter -- separate from the game files that we're editing, so our preference
is for a logical organization of folders. On a PC it looks like this:

More information in
the DM: §41 §45

http://www.inform-fiction.org/manual/html/s41.html
http://www.inform-fiction.org/manual/html/s45.html
http://www.firthworks.com/roger/informfaq/hh.html#2

2 · Preparing to program

 16

If you like this approach, you can download the PC folders; this is a 1Mb compressed file
which also contains enough Inform files to get started with.

On a Mac running OS X it looks very similar:

Here you can download the Mac folders as a compressed file with equivalent contents. Put
this file in a temporary location on your Mac and use a tool like StuffIt Expander to unpack it.
You'll now have a new Inform folder, that you should place in a suitable location in your hard
disk (for example, your home directory).

Or, of course, you can just follow the instructions on Graham's page and fetch the individual
files yourself. If you do this, remember to rename the downloaded Library files to have an
extension of ".h" (for example, rename Grammar to Grammar.h).

On UNIX, you need to be careful because filenames are case-sensitive. I suggest that you
stick to lower case filenames, and then add appropriate symbolic links. For example, one of
the Library files is called verblib.h; by adding links from Verblib.h and VerbLib.h to that
file, you'll be able to compile downloaded games whose source file #Includes any of those
forms.

http://www.firthworks.com/roger/downloads/inform_pc_env.zip
http://www.firthworks.com/roger/downloads/inform_macosx_env.sitx
http://www.inform-fiction.org/software/

 2 · Preparing to program

 17

How do I compile on a PC running XP?

The PC version of the Inform compiler, Inform.exe, is a Windows console application; it
doesn't have its own Graphical User Interface (GUI) with pull-down menus and dialog boxes,
but instead expects to be given the information it needs (such as the name of the file you
wish to compile) on the command line. This means that nothing much happens if you just
double-click on its icon, since this runs the compiler but doesn't tell it what to compile. To be
able to do that, you need to run the compiler in a Command Prompt window. Click start and
then Run..., type command and press Enter (or alternatively click start and select
Programs, Accessories and finally Command Prompt): a Command Prompt window
appears. Make the folder (Inform\Games\MyGame1) containing your first game
(MyGame1.inf) your 'current directory' by typing something like cd \path\to\game_folder
and try to run the compiler:

 C:\> cd \My Documents\Inform\Games\MyGame1
 C:\My Documents\Inform\Games\MyGame1> Inform MyGame1

 'Inform' is not recognized as an internal or external command,
 operable program or batch file.

Unfortunately, if you've followed our advice about keeping the compiler and library files
separate from your games, XP won't be able to find the compiler, and so doesn't recognize
your 'Inform' command. Instead, type this longer form which tells the computer where
you've stored the compiler:

 C:\My Documents\Inform\Games\MyGame1> ..\..\Lib\Base\Inform MyGame1

 Inform 6.30 for Win32 (27th Feb 2004)
 MyGame1.inf(7): Fatal error: Couldn't open source file "Parser.h"

This is better -- the compiler has started to run -- but there's still a problem: you now
discover that the compiler can't find the Library files, so their location must also be specified:

 C:\My Documents\Inform\Games\MyGame1> ..\..\Lib\Base\Inform
+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib MyGame1

 Inform 6.30 for Win32 (27th Feb 2004)

That's it; the compilation has worked (really -- you don't see any 'successful' message). But
it's a real pain having to open a Command window and type all that stuff each time you
compile; it's much cleaner to put the commands in a batch file MYGAME1.BAT:

 ..\..\Lib\Base\Inform +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib
MyGame1

This is a file which you can double-click; it automatically opens a Command window and runs
the compiler in it, but then immediately closes the window before you can see what
happened. To prevent this auto-close, add a second line to your batch file:

 ..\..\Lib\Base\Inform +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib
MyGame1
 pause "at end of compilation"

And now you can double-click MYGAME1.BAT, the compiler runs and you can read any error
messages, before pressing any key to close the Command Prompt window. A better solution
than all of this, however, is to get yourself a decent text editor within which you can both
compile and test your work-in-progress -- see the section on IDEs.

In a few cases, it's useful to capture compiler information to a file; for example, when you
use flags like -u (work out most useful abbreviations) or -z (print memory map of the Z-
machine). Do this by adding to the end of the compilation command:

 ..\..\Lib\Base\Inform +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib
MyGame1 >MyFile.txt

Let's spend just a little longer on that +include_path= parameter. This is telling the compiler
where to look for files which you mention in Include directives, for example when you say

http://www.firthworks.com/roger/informfaq/#2

2 · Preparing to program

 18

Include "Parser";. The parameter specifies three places, separated by commas, for the
compiler to try:

Parameter Refers to

.\ The current folder, containing the game source file.

..\..\Lib\Base Up one folder level (to Games), up another folder level (to Inform),
then down again to the Lib folder and the Base folder below that.

..\..\Lib\Contrib Up one folder level (to Games), up another folder level (to Inform),
then down again to the Lib folder and the Contrib folder below that.

The compiler tries those three locations in sequence each time that it needs to Include a file
into your game source: first the game's own folder, then the Base folder (where the standard
Library files are stored), and finally the Contrib folder (where contributed extensions are
stored). This scheme has a couple of advantages. First, it keeps the various file types nicely
separated; this makes them easier to find, and helps to prevent confusion. Second, it means
that you can make experimental changes to Library files and contributed files if you need to;
just copy the file in question into the game's folder, and make your changes to that copy.
Because the compiler looks first in the game's folder, it will use, for example, a copy of
Parser.h from that folder in preference to the one in Lib\Base. You can experiment with
changing the standard parser (if you're feeling brave) at no risk: other games won't be
affected, and if you simply delete your modified form of the file, the compiler will revert to
using the standard version.

How do I compile on a Mac running OS X?

The Inform compiler for OS X must be run through the Unix Terminal utility. If you double-
click on its icon from a Finder window, nothing much happens: a Terminal window opens
and runs the compiler without parameters, which triggers a "basic usage" message and ends
up by stating that no compilation was requested. The compiler needs to be told which file to
compile, and we must oblige by explicitely typing it.

There are two ways to approach this problem. One requires you to interact with the Unix
Terminal for each compilation, while the other implies a bit of pre-configuring whenever you
start a new game or project but then lets you operate through the Finder. In both cases,
we're assuming that you're using the folder setup that was mentioned in the previous entry,
and that the Inform folder is in your home directory.

Compiling with Terminal: part 1 -- the basics

We're using Mac OS X 10.3 (Panther) at the moment,
which has three different Unix shells, tcsh, bash and
zsh. By default Terminal launches the tcsh shell
(despite the Mac Help telling you that "by default you
use the bash shell"). This only becomes relevant a bit
later on, when we'll tell you about a few syntax
differences.

Go to Applications/Utilities and double-click on
Terminal. This opens the utility which provides you
with a set of windows to access the Unix command line.
Supposing the computer is named Computer, and the
user Boojum, you should see something like this:

Unix lore: A "shell" is a program that
lets you interact with Unix, and it
runs when you open a Terminal
window. Its function is to interpret
what you type on the keyboard,
launch other programs (like cd or ls),
display on the screen what those
programs have to say and then await
your pleasure in case there was
something else you wanted. There are
many different shells for Unix, each
offering particular features and
scripting languages.

If you're unfamiliar with the use of
Unix on your Mac, there are a few
interesting tutorials out there, like:
Mac OS X Unix Tutorial

http://www.osxfaq.com/Tutorials/LearningCenter/index.ws

 2 · Preparing to program

 19

 Last login: Wed Jun 30 18:05:55 on ttyp1
 Welcome to Darwin!
 [Computer:~] Boojum%

You have now the ability to type Unix commands in this window. cd enables us to change the
current working folder and ls lists its contents (remember that names in Unix are case-
sensitive; "LS" is different from "ls"). You can find out which shell you're currently using by
typing:

 echo $SHELL

When the Terminal utility starts, you are in your home directory, here denoted by the ~
symbol in [Computer:~]. In the folder Inform/Games/MyGame1 we have included
MyGame1.inf which is a tiny skeleton game in Inform source format. This is the file we're
going to use in order to test Inform. Type:

 cd Inform/Games/MyGame1

We're now in the game folder. If you type ls you should see its contents:

 About.htm MyGame1.command MyGame1.inf

The current release of the Inform compiler resides in the Inform/Lib/Base folder, and it's
called inform630_macosx. Bear in mind that the name of the file inform630_macosx may
have changed if a new version of the compiler has been released and this FAQ entry isn't up
to date. In that case substitute inform630_macosx with the name of the version that you're
using.

We could now try to run the compiler from here by typing:

 ~/Inform/Lib/Base/inform630_macosx MyGame1

As we said before, you need to specify the source file that you want to compile, in this case
MyGame1.inf, but we don't need to mention its extension. After entering the above
command, we're presented with the following output:

 Inform 6.30 (27th Feb 2004)
 line 7: Fatal error: Couldn't open source file "Parser.h"

That "Fatal error" sounds worse than it really is. What we're seeing here is that the compiler
has run, opened MyGame1.inf, and encountered a problem because in Line 7 of the source
there was a reference to a library file that the compiler isn't able to find. We can improve our
efforts by indicating to the compiler which folders should be investigated for interesting files
(it's one long line, in this document divided because it doesn't fit):

 ~/Inform/Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib MyGame1

And now we should see only this (somewhat terse) output:

 Inform 6.30 (27th Feb 2004)

This is the compiler's way of saying that everything worked peachy, following the old-school
philosophy that perfection means "nothing to complain about". The outcome can be seen if
you type ls again. Among the files listed, you'll see a new one, MyGame.z5, which is the
story file that can be played using a Z-machine interpreter.

Compiling with Terminal: part 2 -- adding an alias

This basic method of compilation is rather clumsy and inconvenient, requiring a lot of typing.
There are three parts in our longish command:

inform630_macosx refers to the compiler program, and ~/Inform/Lib/Base is the name of
the folder which contains it.

2 · Preparing to program

 20

+include_path=./,../../Lib/Base,../../Lib/Contrib tells the compiler where to look
for files like Parser and VerbLib which you've Included in the source file.

Three locations are suggested, separated by commas: this folder, which holds the source file
(./); the folder holding the standard library files (../../Lib/Base); the folder holding useful
bits and pieces contributed by the Inform community (../../Lib/Contrib). The three
locations are searched in that order.

MyGame1 is the name of the Inform source file that we want to turn into a story file.

By convention, all Inform source files have an extension of .inf. However, Mac OS X may
show its Kind as "FUJI BAS IMG document" and attempt to open it with GraphicConverter.
If you're not a regular user of FUJI BAS IMG documents, you may want to change this: right-
click on the file (or Ctrl-click), select Get Info. In the Open with tab, select TextEdit as the
application and press the Change All... button. You're asked for confirmation.

Regarding the first two parts, the alias command comes to our rescue:

 alias inform ~/Inform/Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib

This is telling the Unix shell that typing inform is equivalent to typing

~/Inform/Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib.

Now we have access to the compiler (and the compiler has access to the library files)
through the single word inform, regardless of the current working folder.

Note: The alias command is unfortunately one whose syntax isn't consistent in all
Unix shells. If you're running zsh or bash, you have to type:

alias inform='~/Inform/Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib'

With the alias defined, you can type simply:

 inform MyGame1

and, as before, you should see the compiler run and report no errors:

 Inform 6.30 (27th Feb 2004)

Compiling with Terminal: part 3 -- making the alias permanent

There's just one small glitch in this process. The alias that we have established is good only
for this session. If you close the Terminal window and open a new one, the alias is gone.
There's a fairly easy way to make it stick permanently: write it into a configuration file that is
read every time that you open a Terminal window and launch the Unix shell.

To make the configuration file, we need a Unix text editor. The Unix shell in your OS X
already has one, named pico. Open a new Terminal window (to ensure that we're at our
home directory), type pico at the command prompt and you should see something like this:

 2 · Preparing to program

 21

Type the alias line that we need:

 alias inform ~/Inform/Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib

Now press Ctrl-O to save the configuration file. You're prompted for a name, which has to be
very specific for this to be understood as a configuration file (watch that initial period):

 .tcshrc

... and hit Enter. Now, press Ctrl-X to exit pico. You'll be
back at the command prompt. If you ever need to change
the settings of the configuration file (because you have
moved the Inform folder to a different location or because
you downloaded a new version of the compiler), open a
Terminal window and type:

 pico ~/.tcshrc

Make the desired changes, save it with Ctrl-O, confirm the file name by pressing Enter, and
exit with Ctrl-X.

Note: The .tcshrc configuration file is good only for the tcsh shell. You can follow a
similar process if you work with bash or zsh, but the name and location of the
configuration files vary.

To verify that everything works as it should, open a new Terminal window (Ctrl-N). Now the
configuration file should have been incorporated into the Unix shell. Go to the game folder:

 cd ~/Inform/Games/MyGame1

and type:

 inform MyGame1

You should see our laconic friend:

 Inform 6.30 (27th Feb 2004)

If, on the other hand, you get an error of some kind, something's amiss. Double-check these
instructions, make sure that the path and filenames are correct and please confirm that the
ever-important .tcshrc file is in your home directory.

Compiling with Finder: part 1 -- using a command-line file

If you have followed the above instructions to configure your system, every time that you
need to compile your source code you must open a Terminal window, browse to the
game_folder where your source file resides and type inform source_file. If you don't
close the Terminal window, the next time you need to compile you only have to press the
up-arrow key and the last command that you typed (inform source_file) re-appears,
making compilation just a two-keystroke action.

Unix tip: If you type the
command ls in your home
directory, you will see no .tcshrc
file. This is because files beginning
with a period are considered to be
"hidden". You must use ls -a
instead.

2 · Preparing to program

 22

We could avoid the need to open a Terminal window if we create an executable command-
line file (also known as a "shell script"). Basically, you can create a text file which includes a
bunch of Unix commands and make it executable, so that you may simply double-click on it
from the Finder and forget about the hassle of using the Terminal utility while coding your
game.

The download includes such an executable in Inform/Games/MyGame1, called
MyGame1.command. This file contains two lines of instructions, editable with any text editor:

 cd ~/Inform/Games/MyGame1

 ../../Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib MyGame1

The first one sets ~/Inform/Games/MyGame1/ as your working directory, and the second one
compiles MyGame1.inf, as we have seen in the previous section.

To test that it works, move the story file MyGame1.z5 to the Trash and then double-click
MyGame1.command. A shell window opens to tell you about the process (and to list compilation
errors when necessary). If the final lines look something like this:

 Inform 6.30 (27th Feb 2004)
 logout
 [Process completed]

... it means that compilation was successful. A new MyGame1.z5 story file pops up in your
folder.

You can copy this executable file to any folder where there is a source file to compile, but
you'll have to make changes to the working folder path and the name of the source file.

Compiling with Finder: part 2 -- editing the command-line file

There are two peculiarities that lets your system understand that MyGame1.command is a
Terminal Shell Script. Mac Help will tell you that "the .command filename extension is not
required", whereas in fact it's essential. You also need to set an attribute of the file which
marks it as "executable" (the "executable bits"). If it doesn't meet both conditions,
MyGame1.command won't run as it should.

You have to be careful when editing this file: if you were, for instance, to open it in a text
editor and save it to a different location with a different name, the executable bits might get
lost, and when you double-click it, you would see an error message saying that the file could
not be opened because it's probably not executable.

To make a command file from scratch (also, to fix the problem of "lost" executable bits) you
can follow these simple steps:

Open any text editor and write (using your own values for the game_folder and
source_file):

 cd ~/Inform/Games/game_folder

 ../../Lib/Base/inform630_macosx
+include_path=./,../../Lib/Base,../../Lib/Contrib source_file

Save the file in the folder game_folder and call it source_file.command. Make sure that the
text editor doesn't append a .txt extension. If it does, rename the file manually.

Open a Terminal window and browse until you are in the folder game_folder.

Type:

 chmod 777 source_file.command

 2 · Preparing to program

 23

This command sets all the executable bits for the file and marks it as "executable".

Close the Terminal window.

Now, everytime you need to compile your game, you can just double-click on
source_file.command from the Finder.

Running the game after compiling with Terminal or Finder

After a successful compilation, if you look at the Finder window of MyGame1, there should be
a story file MyGame1.z5. Use the Finder to display the contents of the Inform/Bin/Zoom
folder, and double-click Zoom, the game interpreter. It will present an Open dialog box.
Browse to display the Inform/Games/MyGame1 folder, and open MyGame1.z5.

When the system first "sees" the Zoom interpreter, it automatically creates an association
with story files whose extension is .z5 (and with other Infocom formats). From now on,
you'll be able to play a game simply by double-clicking its story file.

What can I expect when I try to compile my program?

The short answer is: lots of errors. If you think of the compiler as a tool for finding your
programming mistakes, with the generation of runnable Z-code as a fortuitous by-product,
you'll be close to the mark. Just occasionally a compilation is successful, but that's the
exception rather than the rule; it's much more likely that it will fail, probably producing a lot
of obscure messages. So, you should be neither surprised nor worried by a mass of error
reports.

When you see a long list of compilation errors, look only at the first one. Solve that problem
and recompile: you'll often find that several of the error messages -- not only the first one --
disappear. So then concentrate on what's now become the first error, fix that... and repeat
this cycle until the game compiles cleanly.

How do you know that you've got a clean -- error-free -- compilation? Because the compiler
doesn't complain (it's like the dog that didn't bark in the night). If all that you see is
something like this:

 Inform 6.30 for Win32 (27th Feb 2004)

then things have gone well for you.

Every error message mentions the line number in your game where the error was detected,
though that line isn't necessarily where the actual mistake occurs. Still, it's the best clue
you'll get, so study that line, and the one before it, looking for things like: missing or
misplaced commas and semicolons; mismatched pairs of apostrophes '...', quotes "...",
parentheses (...), brackets [...] and braces {...}; misspelled names for objects or variables.

As well as errors, you may also encounter warning messages. While these aren't as serious -
- they don't prevent generation of Z-code -- it isn't a good idea to ignore them. A warning
usually means that something isn't quite as you'd planned; you'll help yourself by fixing
warnings as well as errors, so that your game compiles completely cleanly.

Here's an example which illustrates some of this. Suppose that you'd typed the simple
example shown earlier in So, what is Inform?, making the understandable mistake of
forgetting to put a semicolon at the end of line 19:

 [Initialise

The compilation produces these messages:

http://www.firthworks.com/roger/informfaq/ss.html#1

2 · Preparing to program

 24

 C:\My Documents\Inform\Games\Ruins\Ruins.inf(19): Error: Expected local
 variable name or ';' but found =
 > location =

 C:\My Documents\Inform\Games\Ruins\Ruins.inf(19): Warning: Local variable
 "location" declared but not used

 Compiled with 1 error and 1 warning (no output)

You'll see both an Error which (sort of) suggests that a semicolon may be missing, plus a
completely spurious Warning about "location" not being used. Once you spot the missing
semicolon, the Warning disappears also.

Why does my game start off so big?

The very smallest program using the Inform language is perhaps:

 [Main; "ok";];

and the compiled size of that is just 1.5Kb -- pretty compact, but not a whole bundle of fun
as a piece of interactive fiction.

A minimal IF game needs at least one room, and that calls for the library files to be Included,
so for all practical purposes your starting point is something more like this:

 Constant Story "STORY";
 Constant Headline "^HEADLINE^";

 Include "Parser";
 Include "VerbLib";

 Object theRoom "A room"
 with description "Empty.",
 has light;

 [Initialise;
 location = theRoom;
];

 Include "Grammar";

which clocks in at a hefty 48.5Kb, of which only about 50 bytes is due to your strings,
'theRoom' object and 'Initialise' routine: literally 99.9% of that file is the parser, verb
definitions, standard directions and other model world fundamentals provided by the library.
So that's your realistic baseline: every game starts off with approximately 50Kb of standard -
- and virtually indispensible -- overhead.

In fact, they start off as small as that only if you specify the -~S compiler switch, which de-
activates Strict mode. If you specify -D~S then you get Debug (but not Strict) mode and the
game grows to 55Kb, while -DS gives you both modes, at 76Kb. (For completeness, adding
the -X switch incorporates the Infix debugger as well, for a total size of 137Kb; that isn't
something you often need, though.) In fact, -S is the compiler's default setting, so even if
you specify no switches at all, that's what you'll get. Fortunately, this isn't an issue: you
want Strict (and usually Debug) modes to be active when you're authoring a new game,
because of the assistance they give you in defeating silly programming errors.

We've talked about the minimum size of a game; what about the maximum size? Well, that's
well-defined: it's 256Kb if you compile to Version 5, which is the default, and 512Kb if you
use the -v8 switch to compile to Version 8. That's double the size limit at almost no cost,
which is a damn good deal. (It's not entirely free; the same game is about 2% bigger in
Version 8 than in Version 5, because in the V8 format there's a little more space wasted
between each string and each routine, but the loss is pretty trivial.) And if you supply the -G
switch to compile for the Glulx virtual machine, then there's effectively no size limit at all.

 2 · Preparing to program

 25

Finally, is there any way of telling how big your game will be when finished? Only very
roughly. Once you've written a reasonable proportion, say one third to one half, you should
be able to guess at the eventual quantity of source code, and then use this chart to estimate
the final size of the compiled game.

The chart shows source size (horizontally) versus compiled game size (vertically). The points
are measured from real games, but you should treat this data with caution: lots of factors
can influence the results, such as the quantity of comments in the source, and the number of
library extensions which you Include into your game. The rule of thumb seems to be: up to
400Kb of source will compile to Version 5, up to 800Kb of source will compile to Version 8,
and if you've got more source than that, you're probably looking at a Glulx game.

How do I change the compiler settings?

When you run the Inform compiler, you have as a minimum to tell it the
name of the source file containing your game. For example, assuming
that inform represents the compiler program, and that your current
folder/directory contains an error-free source file myGame.inf as well as all of the library
files, then on a PC this command should be sufficient to create a Z-Machine game
myGame.z5:

 Inform myGame

Often, you need to provide additional information to the compiler. This information comes in
four forms: ICL files, switches, path variables and memory settings, and can be
provided using two methods: on the command line and in the source file. We'll describe
the two methods first.

Method: On the command line

This is the traditional way on many platforms: you simply give the additional information
before or after the name of your source file. For example:

 Inform -X myGame +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib

This compiles myGame.inf, searching for Included files in the specified path, and
incorporating the Infix debugger into myGame.z5.

Method: In the source file

Starting with Inform 6.30, you can also supply any additional information as special
comment lines at the start of your source file. For example, if myGame.inf begins thus:

More information
in the DM: §39

http://www.inform-fiction.org/manual/html/s39.html

2 · Preparing to program

 26

 !% +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib
 !% -X
 Constant Story "...";
 Constant Headline "...";

then you can run the compiler like this to have exactly the same effect as the previous
example:

 Inform myGame

The special comments beginning with !% must be the very first lines in the source file.

You can combine the two methods: a good plan is to define +include_path= on the
command line (since it's probably the same for all games that you compile), while specifying
switches and memory settings at the start of the source file (since they're game-specific, and
often need changing as your game develops).

There's also a Switches directive which enables some switches to be set within the source
file, but it's less useful and has been superseded by the !% technique.

Info: ICL files

ICL files are given in parentheses '(filename)'. An Inform Command Language file can
contain any of these four forms, one to a line. For example:

 inform (myCommands) myGame

Info: Switches

Switches are introduced by a minus sign '-'. For example, -v8 specifies
Version 8 output, -z asks the compiler to print a Z-Machine memory
map, and -~S turns off Strict mode. You can merge several switches
behind a single minus; -v8z~S is the same as -v8 -z -~S. If you keep them separate, you
need spaces between each (-v8-z-~S is wrong). Case matters: -s is different from -S. For
example:

 Inform -~Sv8 myGame

Info: Path variables

Path variables are introduced by a plus sign '+', and specify directories to be used by the
compiler. The default in all cases is the current directory:

Variable Specifies

+include_path=dir,dir,dir,... One or more directories to be searched in sequence when handling a
Include directive. This is probably the only path variable that you're likely
to need.

+source_path=dir,dir,dir,... One or more directories to be searched in sequence when looking for the
source file.

+icl_path=dir,dir,dir,... One or more directories to be searched in sequence when looking for an
ICL file.

+code_path=dir The directory where the compiler should write the Z-code game file.

+temporary_path=dir The directory where the compiler should write any temporary files that it
needs.

For example:
 Inform myGame +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib

More information
in the DM:Table 3

http://www.inform-fiction.org/manual/html/tables.html#tbl3

 2 · Preparing to program

 27

Memory settings

Memory settings are introduced by a dollar sign '$', and control how much memory the
compiler thinks it will need to compile the game. You need worry about these settings only if
a compilation fails with a message that you need to increase one of the values:

Setting Specifies

$MAX_ABBREVS=64 The maximum number of declared abbreviations. It is not
allowed to exceed 64.

$MAX_ACTIONS=200 The maximum number of actions -- that is, routines such as
TakeSub which are referenced in the grammar table.

$MAX_ADJECTIVES=50 The maximum number of different "adjectives" in the
grammar table. Adjectives are misleadingly named: they are
words such as "in", "under" and the like.

$NUM_ATTR_BYTES=6 The space used to store attribute flags. Each byte stores
eight attribytes. In Z-code this is always 6 (only 4 are used
in v3 games). In Glulx it can be any number which is a
multiple of four, plus three.

$MAX_CLASSES=64 The maximum number of object classes which can be
defined. This is cheap to increase.

$MAX_CLASS_TABLE_SIZE=1000 The number of bytes allocated to hold the table of properties
to inherit from each class.

$MAX_DICT_ENTRIES=2000 The maximum number of words which can be entered into
the game's dictionary. It costs 29 bytes to increase this by
one.

$DICT_WORD_SIZE=6 The number of characters in a dictionary word. In Z-code
this is always 6 (only 4 are used in v3 games). In Glulx it
can be any number.

$MAX_EXPRESSION_NODES=100 The maximum number of nodes in the expression evaluator's
storage for parse trees. In effect, it measures how
complicated algebraic expressions are allowed to be.
Increasing it by one costs about 80 bytes.

$MAX_GLOBAL_VARIABLES=240 The number of global variables allowed in the program.
(Glulx only)

$HASH_TAB_SIZE=512 The size of the hash tables used for the heaviest symbols
banks.

$MAX_INCLUSION_DEPTH=5

The number of nested Includes permitted.

$MAX_INDIV_PROP_TABLE_SIZE=15000 The number of bytes allocated to hold the table of ..variable
values.

$MAX_LABELS=1000 The maximum number of label points in any one routine. (If
the -k debugging information switch is set, MAX_LABELS is
raised to a minimum level of 2000, as about twice the
normal number of label points are needed to generate tables
of how source code corresponds to positions in compiled
code.)

$MAX_LINESPACE=16000 The size of workspace used to store grammar lines, so may
need increasing in games with complex or extensive
grammars.

$MAX_LINK_DATA_SIZE=2000 The size in bytes of a buffer to hold module link data before
it's written into longer-term storage. 2000 bytes is plenty.

$MAX_LOCAL_VARIABLES=16 The number of local variables (including arguments) allowed
in a procedure. (Glulx only)

2 · Preparing to program

 28

$MAX_LOW_STRINGS=2048 The size in bytes of a buffer to hold all the compiled "low
strings" which are to be written above the synonyms table in
the Z-machine.

$MAX_NUM_STATIC_STRINGS=20000

The maximum number of compiled strings allowed in the
program. (Glulx only)

$MAX_OBJECTS=640 The maximum number of objects. (If compiling a version-3
game, 255 is an absolute maximum in any event.)

$MAX_OBJ_PROP_COUNT=128 The maximum number of properties a single object can
have. (Glulx only)

$MAX_OBJ_PROP_TABLE_SIZE=4096 The number of words allocated to hold a single object's
properties. (Glulx only)

$MAX_PROP_TABLE_SIZE=30000 The number of bytes allocated to hold the properties table.

$MAX_QTEXT_SIZE=4000 The maximum length of a quoted string. Increasing by 1
costs 5 bytes (for lexical analysis memory). Inform
automatically ensures that MAX_STATIC_STRINGS is at least
twice the size of this.

$MAX_SYMBOLS=10000 The maximum number of symbols -- names of variables,
objects, routines, the many internal Inform-generated
names and so on.

$MAX_STATIC_DATA=10000 The size of an array of integers holding initial values for
arrays and strings stored as ASCII inside the Z-machine. It
should be at least 1024.

$MAX_STATIC_STRINGS=8000 The size in bytes of a buffer to hold compiled strings before
they're written into longer-term storage. 2000 bytes is
plenty, allowing string constants of up to about 3000
characters long. Inform automatically ensures that this is at
least twice the size of MAX_QTEXT_SIZE, to be on the safe
side.

$SYMBOLS_CHUNK_SIZE=5000 The symbols names are stored in memory which is allocated
in chunks of size SYMBOLS_CHUNK_SIZE.

$MAX_TRANSCRIPT_SIZE=200000 Allocated only for the abbreviations optimisation switch, and
has the size in bytes of a buffer to hold the entire text of the
game being compiled: it has to be enormous, say 100000 to
200000.

$MAX_VERBS=200 The maximum number of verbs (such as "take") which can
be defined, each with its own grammar. To increase it by
one costs about 128 bytes. A full game will contain at least
100.

$MAX_VERBSPACE=4096 The size of workspace used to store verb words, so may
need increasing in games with many synonyms: unlikely to
exceed 4K.

$MAX_ZCODE_SIZE=20000 The size in bytes of a buffer to hold compiled code for a
single routine. (It applies to both Z-code and Glulx, despite
the name.) As a guide, the longest library routine is about
6500 bytes long in Z-code; about twice that in Glulx.

$SMALL
$LARGE
$HUGE

Pre-defined values for all the above settings, for small,
medium and large games respectively. Since the default is
$HUGE and you generally only encounter any of these
variables when the compiler tells you that you need to
increase one of them, you can ignore these options.

For example:

 Inform myGame $MAX_STATIC_DATA=20000

 2 · Preparing to program

 29

You might run into a problem with the memory settings when compiling under Unix, since
Unix command shells usually parse the dollar sign as a shell variable substitution. You need
to put a backslash before it:

 Inform myGame \$MAX_STATIC_DATA=20000

Or single-quote it:

 Inform myGame '$MAX_STATIC_DATA=20000'

If you're using a Makefile, you have to go one step further, as the 'make' tool also treats the
dollar sign as something special. In this case, something like this does the trick.

 myGame.z5: myGame.inf
 Inform '$$MAX_STATIC_DATA=20000' ...

Does it matter how I structure my game file?

Yes and no. The general structure of an Inform file always follows the
same basic pattern. (If you want more background on the #Include files,
see Where are all those Library files used?.)

Every game should contain those five lines shown in Areas A, C and E. Then, typically:

in Area B, define any Library constants (like MAX_SCORE) which configure the game's
behaviour; this is also a good place for your own constants. If you are over-riding any
Library routines, the appropriate Replace directive should go here.

in Area D, write the bulk of your code. The ordering of your objects, routines and global
variables doesn't really matter -- except that globals must be defined before their first use --
so you can adopt any scheme that suits you.

in Area F, place any Extend and Verb directives, and any action routines for your new
verbs.

if you are over-riding any Library messages, your LibraryMessages object should go in
Area C between the #Includes of Parser and VerbLib.

if you are using the #Include directive to merge other people's Library packages into your
game, the instructions with those packages will tell you where they should go. Usually, it's
best to place them right alongside the three standard Includes in Areas C and/or E.

More information
in the DM: §4

http://www.inform-fiction.org/manual/html/s4.html
http://www.firthworks.com/roger/informfaq/aa.html#9

2 · Preparing to program

 30

Does it matter how I organize my object definitions?

Yes and no. The general way of defining an object without a parent (for example, a room) is
roughly:

 Object obj_name "external_name"
 with prop_name value,
 prop_name value,
 ...
 prop_name value,
 has attr_name attr_name ... attr_name;

and if there is a parent, one of:

 Object -> obj_name "external_name"
 ...

 Object obj_name "external_name" parent_obj_name
 ...

A child object always has to be defined later in the file than its parent; if you're using the "-
>" method to denote parentage, you need to pay slightly more attention to the precise order
of things than when you're using the parent_obj_name technique.

Within an object definition, you can put either the with segment first (as shown above) or
the has segment; it's a matter of personal choice. Also, the ordering of properties within the
with segment, and the ordering of attributes within the has segment, is down to you. The
important thing is to select a style with which you feel comfortable, and then to apply it
consistently.

To define an object which, as well as belonging to the generic class of Object, is also a
member of a class which you've created (there's a bit more on classes later), the extended
syntax is one of:

 Object obj_name "external_name"
 class class_name
 with prop_name value,
 ...

 class_name obj_name "external_name"
 with prop_name value,
 ...

Does it matter how I lay out my code?

Yes and no (sorry). That's a "no" because, as long as the code is syntactically correct, the
compiler doesn't care in the slightest about its layout. That's a "yes" because, if you write
your code to be human-readable, you help yourself to visualize its logical structure and
anticipate how it will behave at run-time. The trick is: learn how to use whitespace -- that's
blank lines and varying indentation -- so that you can see at a glance what's supposed to be
going on.

One excellent way of handling indentation is to enforce a regular grid by using tabs. Any
good text editor will allow you to specify a value for tab spacing: four is a good number, but
two, three and eight are also popular settings. Just find a value which seems right to you,
and then stick to it.

Stick also to a consistent way of wrapping braces {...} around blocks of code. Which
standard you adopt isn't nearly as important as employing that standard across the board.
You want the code to 'look right' to you.

More information in
the DM: §3.3 §4

More information
in the DM: §3.8

http://www.inform-fiction.org/manual/html/s3.html#s3_3
http://www.inform-fiction.org/manual/html/s4.html
http://www.firthworks.com/roger/informfaq/oo.html#5
http://www.inform-fiction.org/manual/html/s3.html#s3_8

 2 · Preparing to program

 31

And to other people. It's fairly common, when fighting an intransigent problem, to post code
fragments on the Usenet newsgroup rec.arts.int-fiction, so that other Inform programmers
can help with the debugging. You'll find a more willing response if your code has obviously
been laid out with care.

Format it properly as you go. It's always a mistake to type the
code in roughly, telling yourself that you'll come back later to
tidy it up; you almost certainly won't. Enforce your own
discipline of doing it properly first time, every time.

Finally, when writing new code or changing an existing program, check frequently that the
game still compiles cleanly. That way, you’ll catch silly syntax errors while your intentions
are fresh in your mind.

How does a game begin?

A typical Inform game begins something like this; there are roughly three sections:

They thought that taking away your family would shatter your
will. They thought that feeding you rubbish would make you
plump, weak and lazy. They thought that wooden doors and metal
bars would be able to keep you in your place, until the hour
of doom.

They thought wrong.

The Prologue (optional) --
an opening text which
normally sets up the mood
of the narration and offers
the first details of the story.

GROINK RETRIBUTION
An Interactive Porcine Vengeance.
Copyright (c) 2003 by Superb Author.
Release 1 / Serial number 030816 / Inform v6.21 Library 6/10

The Banner (optional),
which displays the game's
general information -- title,
author, serial number,
library version, etc.

In the pigsty
Mud, mud and more mud, enclosed by a wooden fence and one
stone wall to the north.

>

The description of the
starting room, followed by
the command prompt.

Let's take a look at the source code:

 Constant Story "GROINK RETRIBUTION";
 Constant Headline "^An Interactive Porcine Vengeance.
 ^Copyright (c) 2003 by Superb Author.^";

 Include "Parser";
 Include "VerbLib";

 Object pigsty "In the pigsty"
 with description
 "Mud, mud and more mud, enclosed by a wooden
 fence and one stone wall to the north.",
 has light;

 [Initialise;
 location = pigsty;
 "^^They thought that taking away your family would shatter
 your will. They thought that feeding you rubbish would
 make you plump, weak and lazy. They thought that wooden
 doors and metal bars would be able to keep you in your
 place, until the hour of doom.
 ^^
 They thought wrong.^^";
];

 Include "Grammar";

Roger Firth has a tool called
INSTRUCTOR for cleaning up
badly-formatted Inform code

http://groups.google.com/groups?group=rec.arts.int-fiction
http://www.firthworks.com/roger/index.html

2 · Preparing to program

 32

The DM tells us early on that all Inform programs must begin with the
definition of a routine called Main() -- for a superficial overview of how a
game runs, read this later topic -- which may invite new readers to
believe that their game's source code must contain such a definition. That is not so. The
library, which we Include in our source file (through Parser, VerbLib and Grammar), has
already taken care of writing Main() and paving our way with necessary defaults.

We do need, however, to define a routine called Initialise, which runs before any text is
printed and whose only mandatory task is to set the location variable to the starting room:

 location = pigsty;

Bear in mind that the location doesn't have to be a room: it may be a container (the player
starts the game locked up inside a wardrobe) or a supporter (a few games start with the
Player Character (PC) waking up on his bed).

Other than that, you can use Initialise() to write, set up and trigger just about anything
that needs to be, well, initialised, before the game runs: assign starting values to variables,
give possessions to the PC, start up daemons and timers which need to be functioning from
the beginning, etc. In our example, we wish to display the prologue text, and we do it at the
end of the routine with the quoted string statement -- which equates to (a) display the
string, (b) output a newline character and (c) return.

Eventually, Initialise() runs out of statements and returns, at which
moment the game banner is automatically printed. The banner is made
up from three parts: the game title, defined by the constant Story
(optional); the author's name, copyright info, description of game or
whatever you wish for a headline, defined by the constant Headline (optional); and a line
comprising the release number (1 by default, unless you define otherwise with the directive
Release), the serial number (the date of compilation in YYMMDD format by default, unless
you define otherwise with the directive Serial) and the versions of the compiler and the
library. If you do not define the constants Story and Headline, the banner will consist only
of this last line.

The banner is to players like the opening titles in a movie: from here on we're deep in the
story/game business. However, you may want your game not to print a banner at the very
beginning, because you wish, for example, to turn the prologue into an interactive opening
sequence instead of a bunch of read-only paragraphs. For this, you must explicitly return 2
at the end of Initialise():

 [Initialise;
 location = pigsty;
 print "^^They thought ... ! explicit print statement doesn't return
 They thought wrong.^^"; ! after displaying the text.
 return 2;
];

This will stop the banner from appearing after Initialise() has run its course. Now, you
should include the call

 Banner();

wherever it's appropriate for your game to print one; the copyright notice at the start of the
DM explains the importance of the information it displays. Players, from their end, can
summon up the banner whenever they want with the use of the VERSION command.

When Initialise() finishes, banner or no banner, the starting room comes up on the screen.
That means that you must always define at least this room (in our example case, the pigsty).
So let's take another look at our (slightly revised) source code:

More information
in the DM: §1.2

More information
in the DM: §21

http://www.inform-fiction.org/manual/html/s1.html#s1_2
http://www.firthworks.com/roger/informfaq/ii.html#2
http://www.inform-fiction.org/manual/html/s21.html

 2 · Preparing to program

 33

This source code... ... means... ... and is

Constant Story "GROINK RETRIBUTION"; Defines the title of the game. (*) Optional

Constant Headline "^An Interactive
Porcine Vengeance.
 ^Copyright (c) 2003 by
Superb Author.^";

Copyright info, description, etc. (*) Optional

Release 1; Game release (1 by default). (*) Optional

Serial 030816; Serial number (YYMMDD of compilation
by default). (*)

Optional

Include "Parser"; Includes library file Parser.h Mandatory

Include "VerbLib"; Includes library file Verblib.h Mandatory

Object pigsty "In the pigsty"
 with description
 "Mud, mud and more mud,
 enclosed by a wooden fence
 and one stone wall to the
 north.",
 has light;

Definition of the starting room. Mandatory

[Initialise; Starting definition of the Initialise()
routine.

Mandatory

location = pigsty; Set location variable to starting room. Mandatory

print "^^They thought that taking away
your family would shatter your will...
^^They thought wrong.^^";

Prologue text. Optional

return 2; If present, the banner won't appear. Optional

]; End marker of the Initialise() routine. Mandatory

Include "Grammar"; Include library file Grammar.h Mandatory

(*) These entries are part of the game banner.

Initialise() lets you effectively decide how to present your game to
players, a delicate moment in which you seldom want to give the
wrong impression. Your imagination is the only limit here, but let's
take inventory of some examples and common uses.

Ability to pause execution until the player presses a key

If you decide to write a long introduction, you can simply code a print statement, open the
double quotation marks (") and begin typing your magnum opus until smoke comes out from
the keyboard:

 print "Call me Ishmael. Some years ago...
 ...only found another orphan.
 ^^
 finis.";

At run-time, this procedure will fill the interpreter's screen with text and, when it reaches the
bottom, a [MORE] prompt will appear, waiting for the player to hit a key in order to fill
another screen. You may want, however, to have a little more control on the quantity of
displayed text, in favour of suspense or to set the pace of information disclosure.

More information in
the DM: §21 §42
and in Marnie Parker's
Stupid Initialise tricks

http://www.inform-fiction.org/manual/html/s21.html
http://www.inform-fiction.org/manual/html/s42.html
http://members.aol.com/doepage/doefaq.htm#initial

2 · Preparing to program

 34

 print "^Welcome to the Dark Ribbon Club. There
 are three ways to acquire membership:";
 @read_char 1 i; ! Wait for the player to hit a key.
 print "^^(a) Read Muffungus incantations to
 an audience of midget Praetorians
 under a moonless sky.";
 @read_char 1 i; ! Wait for the player to hit a key.
 print "^(b) Eat snails and oysters in rapid
 succession for seven days without pause.";
 @read_char 1 i; ! Wait for the player to hit a key.
 print "^(c) Become the slave of a club member
 until he decides to set you free.
 ^^
 The choice is all yours...";

The @read_char opcode is responsible for the trick. In this simple form, it pauses the
game's execution until the player hits any key. Since it's using a variable (i), don't forget to
declare it in the header of Initialise():

 [Initialise i;
 ...

This technique may be combined with clearing the screen before the new text appears:

 print "^Welcome to the Dark Ribbon Club.";
 @read_char 1 i; ! Wait for the player to hit a key.
 @erase_window -1; ! Clear screen.
 print "^^The place where power and secrecy
 join forces to create a paroxysm of
 political greatness.";

Happily, version 6/11 of the Library makes this a little simpler. You can replace the
@read_char 1 i; by KeyCharPrimitive(); (no need to declare the variable i), and the
@erase_window -1 by ClearScreen();. Not only easier to remember, but also more
powerful: the routines work for both Z-machine and Glulx.

Adding your own line to the banner

A common feature is a line displayed at the start of the game, suggesting that players might
want to seek help, or read the game credits, or check the terms of the game's licence; a
good place to do this is right after the banner information appears. So, call Banner() within
Initialise(), then display your additional line, and then return 2 as we have seen above:

 [Initialise;
 location = pigsty;
 print "They thought..."; ! Display the prologue text.
 Banner(); ! Call up the standard banner.
 print "Type HELP for information on licencing and credits,
 or if you get stuck.^";
 return 2; ! No need to display the banner again.
];

Calling up cool banners

If the regular banner does not satisfy your requirements and you need to produce a title
page of astounding singularity, you should return 2 from Initialise() and make a call to
your own printing routine:

 [Initialise i;
 location = pigsty;
 print "They thought..."; ! Display the prologue text.
 @read_char 1 i; ! Wait for the player to hit a key.
 MyCoolBanner(); ! Call up your customised banner.
 return 2;
];

 2 · Preparing to program

 35

And then, of course, you must write a routine to suit your needs:

 [MyCoolBanner;
 ...
 your code here
 ...
];

This usually involves messing around with centring text, displaying boxed quotations or
flashy effects like typing one character at a time, and other advanced stuff which is better
left alone for the time being.

Changing defaults for library pre-defined objects or behaviour

Inform's library defines a whole bunch of objects and default configurations which are ready
to use by the game designer. There are times when you might wish to alter some pre-
defined characteristic. The description of the dark ("It is pitch dark, and you can't see a
thing.") or that of the Player Character ("As good-looking as ever.") are common examples:

 thedark.description = "You are engulfed in creepy shadows.";
 player.description = "A slender youth in the prime of life, hungry for
 experience and adventure.";

Or you may want to change the default inventory style:

 inventory_style = FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT;

Equipping the player with possessions

If the PC needs to start the game carrying some objects around, Initialise() is the perfect
place to do it:

 move axe to player;
 move pants to player;
 give pants worn;

The move statement makes the desired object a possession of the player. We are also
setting the worn attribute so that the pants object comes into the scene covering all the
embarrassing bits as opposed to being carried in the player's hands.

Changing the player into a user-defined character

To learn about the technical aspects of the player object defined by the library, you may
consult this later topic. For now, let's just suppose that the human being with the pre-
defined defaults represented by the library's selfobj are not suitable for your protagonist.
We have already seen that it's easy to change its description -- or, in fact, other properties --
through the player variable, but if the changes are more extensive, you might need to
define an altogether different player object:

 Object SelfVampire "(self object)"
 with short_name [; return L__M(##Miscellany, 18);],
 description "As terrifying as ever.",
 ...
 has animate concealed proper transparent;

In Initialise() you have two ways of making the change; through the variable player:

 player = SelfVampire;

or with the library routine ChangePlayer():

 ChangePlayer(SelfVampire);

http://www.firthworks.com/roger/informfaq/oo.html#9

2 · Preparing to program

 36

You should use either technique before you set the location variable. If you need to change
the player again during the course of the game, you should use only ChangePlayer().

Starting up timers and daemons

If a timer or a daemon (to learn more about them you may consult this
later topic) needs to be functioning from the beginning of the game, you
can easily activate them in Initialise() by calling their respective library
routines:

 StartDaemon(CleaningRobot);
 SetTimer(VaultDoor, 10);

Setting up a game with "real" time

Every time that the player performs an action (except those defined as
meta actions -- SAVE, RESTORE, RESTART and the like) it counts as one
"turn". In the status line of a normal Inform game, we can see the
current turn count right next to the current score. However, you can replace the turn and
score counters by a clock displaying the time that is passing in the model world.

First, add this line at the top of your source code:

 Statusline time;

And then, in Initialise():

 SetTime(time, rate);

where time is a number between 0 and 1439 defining the minutes since midnight, and rate is
another number which specifies how many minutes you wish to push the clock forward at
each turn. Suppose we want to start the game at 1:05 a.m., and each turn to count as five
minutes:

 SetTime(65, 5);

Change the default BRIEF lookmode into SUPERBRIEF or VERBOSE

Normally, an Inform game will set BRIEF as the default look mode, which gives long
descriptions of places never before visited and short descriptions otherwise. You can change
this by setting the variable lookmode to a suitable value:

 lookmode = 1; ! BRIEF mode.
 lookmode = 2; ! VERBOSE mode (always long descriptions).
 lookmode = 3; ! SUPERBRIEF mode (always short descriptions).

Ability to restore a previously saved game before anything interesting
happens

Some games include lengthy prologues or introductory sequences and, as much as this
narration technique might be necessary to give players all the relevant information before
the action begins, it gets annoying to have to go through the same ramble every time you
run the game. You can offer players the option to immediately restore a previously-SAVEd
game:

 print "Would you like to restore an old game? ";
 if (YesOrNo()) <Restore>;

The YesOrNo() library routine waits for the player to type either YES (which makes the
if (...) test true and executes the Restore action) or NO (which equals to false;
execution proceeds without restoring).

More information
in the DM: §20

More information
in the DM: §20

http://www.inform-fiction.org/manual/html/s20.html
http://www.firthworks.com/roger/informfaq/ii.html#4
http://www.inform-fiction.org/manual/html/s20.html

 2 · Preparing to program

 37

How does a game end?

Every turn, Inform checks the value of a library variable called deadflag.
It can be:

0 The usual state. Inform assumes that nothing drastic has happened to the Player Character
(PC) and continues game execution.

1 Game has been lost -- the PC has died.

2 Game has been won.

3,4,... Game has been lost -- the PC has suffered a user-defined demise.

Note: It's remarkable the lack of apparent symmetry between Winning and Dying as the only
pre-defined defaults of the library. It probably pays homage to Ye Olde Adventurers, who
knew not of the word Losing, and nothing short of death would stop them in their tracks.

A value of deadflag other than zero will finish the game. To achieve this, you just have to
make the assignment:

 deadflag = 2;

wherever you need it, and the result will be:

 *** You have won ***

 In that game you scored 35 out of a possible 100, in 325 turns.

 Would you like to RESTART, RESTORE a saved game or QUIT?

We have three lines: (a) an informative message of the fate of the PC, in bold face and
highlighted by asterisks to ensure that the point gets home; (b) a summary of the achieved
score and turn count; (c) available options now that the game is over. The value of deadflag
affects the demise-message -- though it does not affect the bold face or the asterisks. A
value of 1 will print "You have died" and, for whatever other alternate endings you may
need, you will be using values of 3 or more. In this case, you must provide a library entry-
point routine called DeathMessage(), in which you specify the equivalence between
deadflag values and final one-liners:

 [DeathMessage;
 switch (deadflag) {
 3: print "You acted unwisely.";
 4: print "You have shot your own foot.";
 5: print "You rot in jail.";
 ...
 }
];

You can customise a little the score line if you use the PrintRank() entry point routine,
which lets you award flamboyant ranks to the player depending on the value of the score
variable:

 [PrintRank;
 print ", earning you the rank of ";
 if (score >= 90) "Legend of the Far West.";
 if (score >= 70) "Marshall.";
 if (score >= 50) "Deputy.";
 if (score >= 30) "Cowboy.";
 "Tenderfoot.";
];

More information
in the DM: §21

More information
in the DM: §22

http://www.inform-fiction.org/manual/html/s21.html
http://www.inform-fiction.org/manual/html/s22.html

2 · Preparing to program

 38

This will result in something like:

 In that game you scored 35 out of a possible 100, in 325 turns,
 earning you the rank of Cowboy.

The final Win/Lose line tells the player that he can now perform only three actions, RESTART,
RESTORE a saved game or QUIT. This is not entirely accurate. If the game designer
implements a score system based on tasks, players may at this point demand a FULLSCORE,
which will tell them in detail how many points they got for each accomplished task.
Additionally, players may invoke the command UNDO, thus returning to the previous turn,
just before they managed to bring the game to one of its conclusions. You can make players
aware of this possibility by writing the following constant:

 Constant DEATH_MENTION_UNDO;

and the last line will change to:

 Would you like to RESTART, RESTORE a saved game, UNDO your last
 move or QUIT?

It is not uncommon for a game to include Easter-eggs or funny responses for highly
improbable actions. These tend to go unnoticed by most players, but Inform gives you an
ace up your sleeve to prevent the waste of your most inspired moments. You can define:

 Constant AMUSING_PROVIDED;

along with an entry point routine called Amusing(), in which you can list all the interesting
things that the player may have missed:

 [Amusing;
 print "Have you tried to kiss the Ancient Mariner?^
 Or place the pearl inside Coleridge's wig?^
 ...";
];

and, only if the player has won the game (deadflag=2), this will result in:

 Would you like to RESTART, RESTORE a saved game, see some
 suggestions for AMUSING things to do or QUIT?

Is there a good Integrated Development Environment?

As we speak, there isn't an Inform IDE which is generally agreed to be both reliable and
effective, and which is in widespread use (though there are a few upcoming possibilities; see
Mike Perlini's IF-IDE on the PC, and Scott Forbes' Yonk on the Mac). Until that situation
changes, we survive by using a ordinary text editor like NotePad (not a word processor --
you don't want any funny formatting characters mixed in with the program).

Having said that, NotePad is not very powerful; an industrial-strength editor will do wonders
for your Inform productivity, especially if it offers syntax colouring and the ability to compile
and run Inform games without leaving the editor. Several good possibilities are listed in
Roger Firth's List of IF Editors, and in the RAIF FAQ. For the PC, TextPad is my
recommendation, and here are instructions on how to harmonize it with Inform. If you do
this in conjunction with the folder structure suggested in the first topic, use this line when
you come to the part about setting the Parameters for the Infrmw32 compiler:

 $File -S +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib

http://www.geocities.com/mjperlini/
http://www.ravenna.com/~forbes/yonk/
http://www.firthworks.com/roger/editors/index.html
http://www.plover.net/~textfire/raiffaq/FAQ.htm#editors
http://www.textpad.com/
http://www.onyxring.com/informguide.asp?article=14
http://www.firthworks.com/roger/informfaq/pp.html#1

 2 · Preparing to program

 39

How do I use Modules?

Don't; they were designed to solve a problem which no longer exists.

The idea behind pre-compiled library modules was to cut down on the time
taken to compile your game, back in the days when PCs were steam-
powered and slow. Nowadays, PCs are much much faster, and the
compilation time saving is tiny, much less than the period it would take you to learn how the
module system is meant to work. Also, there are some snags to be aware of: various
techniques for modifying the standard Library behaviour simply don't work as expected with
pre-compiled modules; they aren't compatible with Version 8 stories, and so on. Most
worryingly, there's the chicken and egg effect: because the module system is so little used, it
is suspected of being more buggy than the rest of Inform, so people avoid using it, so the
bugs aren't found... Be warned; modules simply aren't worth bothering about.

Can I write a game in French?

Yes, you can -- and in several other languages as wel (assuming, of
course, that you already speak the language fluently). Inform is
currently unique in being the only IF development system to offer
this degree of support for non-English game creation. To write a game in one of these
languages is simple; just do this:

1. Download two library files. You must obtain replacements for the two standard library

files which contain English-language text: the language definition file English.h (which
defines parser-significant words like AND, EXCEPT and THEN; pronouns like IT and
THEM; compass directions; small numbers; and all of the messages), and the file of basic
verb definitions Grammar.h. The replacements are typically called, for example, French.h
and FrenchG.h. Put these replacement files in the same folder as the other library files;
there's no need to get rid of English.h and Grammar.h.

2. Change one of the standard Includes. Every English game source contains these
three lines somewhere; the first two are fine as they are, but the third line should be
changed to instead refer to the new grammar file FrenchG.h:

 Include "Parser";
 Include "VerbLib";

 Include "Grammar"; ! change this line

3. Modify your compilation process. You control the operation of the compiler by setting
command-line switches (for example -X or -~S) and variables (for example,
+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib).

To compile using a non-English language, you need to defined another variable, thus:
+language_name=French. The value that you provide here is used within parserm.h to
Include the appropriate language definition file -- French.h in our example -- instead of
the default English.h. Here's an example of a Windows batch file that could be used to
compile a French version of RUINS.INF:

..\..\Lib\Base\Infrmw32 RUINS -S +language_name=French
+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib | more
pause "at end of compilation"

4. Think about fonts. If you intend to write in a language which makes heavy use of
accented or unusual characters (such as Cyrillic or Greek), you'll also need to study the
topic on character sets. With the Western European languages, this isn't usually a
problem.

Rien de plus simple!

More information
in the DM: §38

More information in the
DM: §34 §35 §36 §37

http://www.inform-fiction.org/manual/html/s38.html
http://www.inform-fiction.org/manual/html/s34.html
http://www.inform-fiction.org/manual/html/s35.html
http://www.inform-fiction.org/manual/html/s36.html
http://www.inform-fiction.org/manual/html/s37.html
http://www.inform-fiction.org/translations/
http://www.firthworks.com/roger/informfaq/aa20.html

 3 · Learning The Lingo

 41

3 · Learning The Lingo

When are upper and lower case differentiated?

Mostly, they're treated the same. When you assign a name to something like an object or a
routine, you can use either upper and lower case letters (you can also use underscores (_),
and you can have digits anywhere except as the first character).

The difference between upper and lower case is important for:

• statements -- words like if, print, and return must be in lower case;
• strings -- text within quotes "..." respects upper and lower case differences;
• single-character constants -- for example, 'e' and 'E' have different values;
• print rules -- (The) and (the) are different rules, as are (A) and (a);
• escape sequences -- for example @^e and @^E produce different output.

Even where case doesn't actually matter, there are a few conventions:

• dictionary words -- for example 'grumpy' 'old' 'man', are usually typed in lower
case, since that's how they're stored anyway;

• directives like Object are given an initial capital letter;
• classes -- for example, a Room class -- are given an initial capital letter;
• actions -- for example a Smile action and a matching SmileSub routine -- have an

initial capital;
• constants are often named in upper case, to help distinguish them from variables.

When do I use commas (,) and semicolons (;)?

You use a semicolon often; it's a terminator -- every statement and every directive ends with
one. The comma is a separator, and you use it in only a few situations:

• between the properties of an object declaration;
• between the terms of a print statement;
• between the arguments of a call to a routine;
• between equivalent case values in a switch statement.

It's the first of those which seems to give novices most difficulty, so let's walk slowly through
an example. This declaration starts with the Object directive, and ends several lines later
with a semicolon:

3 · Learning The Lingo

 42

You never need any punctuation in the object's header -- the first line which defines its
internal and external names, and its parentage:

You always need these commas, to separate the name property from the initial property,
initial from description, and description from after:

A comma at the end of the final property definition, before the has segment, is optional. It's
not needed, but it doesn't do any harm (and it makes things a bit easier if you later add
another property to the list):

These semicolons are within the [...] which surround the embedded property routine, and so
have no effect on the structure of the mushroom's definition:

 3 · Learning The Lingo

 43

When do I use apostrophes (') and quotes (")?

If your game mentions words in apostrophes (for example, 'grumpy' 'old' 'man'), then the
compiler stores those words in what's known as the game's dictionary. If your game
mentions words or phrases in quotes (for example, "grumpy old man") then you're
defining a string, which the compiler stores in another place entirely. There's a really
important distinction here: words in the dictionary are effectively input tokens, to be
matched against words that the player types during the game. Strings are output messages,
to be printed by your program during the game. For example, in this fragment:

 >EXAMINE THE GRUMPY OLD MAN
 The grumpy old man stands silently in the corner.

the game is comparing the player's input against the words that it knows (the contents of
the dictionary), recognising an EXAMINE operation on an object identified by the tokens
GRUMPY, OLD and MAN, and printing the description associated with that object. The object
itself might have been defined thus:

 Object old_man "grumpy old man"
 with name 'man' 'grumpy' 'cross' 'old' 'elderly' 'ancient' 'gnome',
 description "The grumpy old man stands silently in the corner.",
 ...
 has animate;

and you can easily see the difference between the list of apostrophe-enclosed input tokens in
the name property, and the quote-enclosed output string in the description property.

Unfortunately, Inform muddies this clear distinction by treating the name property (also the
Extend and Verb directives) as a special case, and permitted you to enclose the input token
in either apostrophes or in quotes. Please, don't take advantage of this unnecessary
concession; stick to the simple and consistent policy: apostrophes around input (dictionary)
words, quotes around output strings. Do that everywhere, and you won't get confused.

What does a string "..." as a statement by itself mean?

One of Inform's more unusual program statements is nothing more than a string in quotes:

 "The grumpy old man takes no notice.";

which to the uninitiated can be pretty confusing. Just remember that this is merely a
shorthand form of:

 print_ret "The grumpy old man takes no notice.";

and that in turn these are both exactly equivalent to the three statements:

 print "The grumpy old man takes no notice.";
 new_line;
 return true;

Once you grasp what's going on, you'll find this a useful and convenient shortcut, especially
after an if statement; most people find the first of these two forms clearer to work with:

 if (...) "The grumpy old man takes no notice.";
 if (...) {
 print "The grumpy old man takes no notice.";
 new_line;
 return true;
 }

One aspect of the "..."; statement that regularly fools newcomers is its inbuilt return. The
statement outputs some text, and then returns immediately from whatever routine it occurs
in, which of course means that any statement(s) following it cannot possibly be executed.
Misunderstanding this behaviour is far and away the most likely cause of a "This statement
can never be reached" compiler warning.

More information
in the DM: §1.12

http://www.inform-fiction.org/manual/html/s1.html#s1_12

3 · Learning The Lingo

 44

By the way, if you assign a string to a variable:

 Global X = "The grumpy old man takes no notice.";

then you can achieve the same effect as a "..." statement with any of these:

 print_ret (string) X;
 print (string) X, "^"; return true;
 print (string) X; new_line; return true;

What are the circumflex (^) and tilde (~) characters used for?

Inform uses both of these characters, which occur only rarely in English texts, for special
purposes.

The circumflex can be included as part of a string within quotes "..." in
order to output a newline character. For example:

 print "^^^A line on its own.^^^";

prints three newlines before and after the line of text. If you wish to output a literal
circumflex, you need to use the rather clumsy construct @@94, thus:

 print "A line with a circumflex @@94 in the middle.^";

The circumflex can also be included in a dictionary word within
apostrophes '...' in order to store a literal apostrophe as part of that word.
For example:

 name 'child^s' 'bicycle' 'bike' 'small',

might be part of the definition of an object which would respond to TAKE THE CHILD'S BICYCLE.

The tilde can be included as part of a string within quotes "..." in order to
output a literal quote character. For example:

 print "The bottle is labelled ~POISON~ in green letters.";

prints The bottle is labelled "POISON" in green letters. If you wish to output a
literal tilde, you must use the construct @@126, (and, for completeness, a literal at-sign
requires @@64).

In addition to embedding a quote within a string, the tilde is also
employed to mean "not", in several different circumstances:

"not equal" operator

For Example: if (X ~= Y) { ... }
Meaning: The condition is true if X is not equal to Y.

logical NOT operator

For Example: if (~~(X == Y)) { ... }
Meaning: The condition is false if X is equal to Y (this example is logically identical to
 that on the line above).

For Example: X = ~~Y;
Meaning: Invert Y's logical content. That is: if Y is false (0) then X becomes true (1);
 if Y is any other value then X becomes false (0).

More information
in the DM: §1.11

More information
in the DM: §1.4

More information
in the DM: §1.11

More information in the
DM: §1.6 §1.8 §3.7 §39

http://www.inform-fiction.org/manual/html/s1.html#s1_11
http://www.inform-fiction.org/manual/html/s1.html#s1_4
http://www.inform-fiction.org/manual/html/s1.html#s1_11
http://www.inform-fiction.org/manual/html/s1.html#s1_6
http://www.inform-fiction.org/manual/html/s1.html#s1_8
http://www.inform-fiction.org/manual/html/s3.html#s3_7
http://www.inform-fiction.org/manual/html/s39.html

 3 · Learning The Lingo

 45

bitwise NOT operator

For Example: X = ~Y;
Meaning: Invert Y's literal content, processing each bit individually. That is, if Y
 contains 41 ($0029 in hexadecimal) then X becomes -42 ($FFD6).

attribute resetting

For Example: Object radio "radio"
 ...
 has static ~on;

Meaning: The radio object is declared with its on attribute not set. Strictly unnecessary
 (since all attributes are unset by default), it's a handy way of reminding
 yourself that the attribute is likely to be set and reset during the game.

For example: give radio ~on;
Meaning: Clear (or unset, or remove) the radio's on attribute.

compiler control

For example: -~S
Meaning: Turn off the S switch, disabling Strict and Debug modes.

By the way, if you're uncertain of the difference between bitwise and logical operators, see
this article by Sonja Kesserich.

How do I concatenate strings?

The short answer: you can't. There's no simple expression similar to the string manipulation
commands provided by other languages. If you were thinking of using string concatenation,
comparison, subsetting, case-folding or anything else on these lines, you need to rethink
your approach. In practice, however, you'll almost certainly find that this isn't a problem:
most Inform programmers don't even notice the lack of string handling capabilities.

Here's a longer answer (though it comes to the same thing). If you've come to Inform with
programming experience in Basic, you might (mistakenly) expect to be able to do stuff like
this:

 Global X;
 ...
 X = "Combining";
 X = X + " some text";
 print X;

Well, although Inform happily runs that code, the outcome is undoubtedly not what you were
hoping for. What gets printed is a decimal number, guaranteed to be completely and utterly
meaningless; here's why: X is an Inform variable, capable of holding any 16-bit number. The
first line stores the string "Combining" at some suitable location within the Z-machine's
memory, and puts the 16-bit address of that location into the variable X. The second line
stores the string "some text" at another suitable location, and adds the 16-bit address of
that location to the current contents of X (the address of the first location). The third line
prints the new contents of X... which is garbage.

That is, adding together two strings makes about as much sense as saying "I've got a two-
bedroom house at 54 High Street, and my fiance has a one-bedroom apartment at number
43. Therefore, when we get married, we'll own a three-bedroom residence at number 97."
Life, and Inform, doesn't work like that.

http://www.onyxring.com/informguide.asp?article=44

3 · Learning The Lingo

 46

If you think about it, you'll see why string comparison is also a non-starter:

 X = "Combining";
 if (X == "Combining") { ... }

That test is never ever going to be true (because it's comparing the address where the first
string is stored with the address where the second string is stored). However, you may have
more success with this approach:

 Constant MYSTRING = "Combining";
 ...
 X = MYSTRING;
 if (X == MYSTRING) { ... }

Inform's string manipulation capabilities are virtually non-existent. A string -- one or more
characters enclosed in quotes "..." -- is encoded by the compiler and packed into as few
bytes as possible; these bytes are stored in a part of the Z-machine's memory which is
dedicated to just this purpose, and referred to by the address of the first byte. Strings are
like constants; they can be constructed only during compilation, and thereafter they don't
vary. At run-time, the interpreter provides just two operations to handle strings: print
unpacks the characters and displays them on the screen, and print_to_array unpacks the
characters into the individual entries of a byte array. You'll notice that these are read-only
operations; the Z-machine simply doesn't permit you to update a string after it's been
created.

What's the difference between MyRoutine and MyRoutine()?

There are several reasons why you might write a standalone -- named -- routine, most
commonly because you find yourself repeating the same chunk of processing in different
places. For example, suppose that your game was time-oriented, sensitive to the difference
between morning, afternoon and night; you could create a routine to facilitate this
calculation:

 [PartOfDay i;
 switch (the_time) { ! minutes since midnight
 360 to 719: i = 1; ! 06:00 - 11:59 (morning)
 720 to 1079: i = 2; ! 12:00 - 17:59 (afternoon)
 default: i = 0; ! 18:00 - 05:59 (night)
 }
 return i;];

Having written the routine once, you can now use it wherever you need to determine the
difference:

 if (PartOfDay() == 0) print "The moon"; else print "The sun";
 print " shines thinly through the foliage overhead.";

When you call a routine, you supply any necessary arguments enclosed in parentheses after
the routine's name. If the routine doesn't require an argument -- as is the case for
PartOfDay -- it's important that you still supply a pair of empty parentheses. Consider these
assignments:

 X = PartOfDay();
 Y = PartOfDay;
 Z = Y()

Afterwards, X contains the number (0, 1 or 2) returned by running the PartOfDay routine --
presumably the value that you were after -- whereas Y contains the routine's address; not
nearly so useful. (Note, though, that Z is ok; like X, it contains 0, 1 or 2.)

More information in
the DM: §1.7 §20

http://www.inform-fiction.org/manual/html/s1.html#s1_7
http://www.inform-fiction.org/manual/html/s20.html

 3 · Learning The Lingo

 47

What's the difference between a Directive and a Statement?

Put simply, a directive controls what happens while the game is being
compiled, whereas a statement controls what happens while it's being
played. This distinction is perhaps most apparent with Message (a
directive which outputs a message during compilation) and print (a statement which outputs
a message at run-time). However, you don't often need to use Message; the directives that
you'll most commonly encounter are Include -- for merging files during compilation -- and
the set used for creating data structures: Constant, Global and Array; Object and Class;
Verb and Extend. Oh, and [...], the directive which wraps a succession of statements into a
routine.

What's the difference between Include and #Include?

Not very much. They both merge in the contents of a specified file, with
the distinction that #Include can be placed both within and outside the
definition of a routine, whereas the plain Include can be placed only
outside a routine. There's no down side, so you can happily use #Include in all cases. The
same goes for the conditional compilation directives like IfDef...IfNot...EndIf -- you might
as well use #IfDef and so on.

More information in
the DM: §1.2 §2.1

More information in
the DM: §38

http://www.inform-fiction.org/manual/html/s1.html#s1_2
http://www.inform-fiction.org/manual/html/s2.html#s2_1
http://www.inform-fiction.org/manual/html/s38.html

 4 · Dabbling in Data

 49

4 · Dabbling in Data

How do constants and variables differ?

A variable is a value which can change, possibly many times, while the game is being
played; typical examples are location and score. A constant is a fixed value, set when when
the game is compiled; it physically cannot change during play. For example, if you write:

 if (score == 100) { ... }

then pretty clearly the value of 'score' (a variable) might change at any time, but '100' (a
constant) is never going to be anything other than the number between 99 and 101.

It's actually better programming practice to write this alternative form (which does, however,
behave identically):

 Constant MAX_SCORE = 100;
 ...
 if (score == MAX_SCORE) { ... }

There are two reasons for this. When you read through your game and happen upon that
second if statement, the word MAX_SCORE makes it fairly apparent what the test is for.
Also, if you later decided to change the game's maximum score, it's easier and more reliable
to change the value assigned -- in one place -- to MAX_SCORE than it is to search though
the program looking for values of '100' which may need to change. Here too you can see the
advantage of naming constants in upper case -- it makes their distinction from variables
visually apparent.

What can be stored in a variable?

Roughly speaking, the value that you can store in a variable is one of two things:

a number -- an integer in the range -32768..0..32767; for example:

 X = 42;
 X = MAX_CARRIED - 1;

the other stuff -- values that refer to an object, a string, a word in the dictionary, an action,
a routine, and all the other internal Inform data types; for example (this list is not
exhaustive, but does show most of the common examples):

 X = old_man; ! a reference to an object
 X = "grumpy old man"; ! a reference to a string
 X = 'grumpy'; ! a reference to a dictionary word
 X = action_to_be; ! a reference to a variable containing an action
 X = Initialise; ! a reference to a routine (without running it)
 X = Initialise(); ! the value returned by running the routine

This difference is very important: arithmetic using numbers is fine, but arithmetic with
Inform data types makes no logical sense. However, because Inform can't tell whether
what's stored in a variable is a number or the other stuff, it doesn't stop you from
performing meaningless operations, like dividing an object by a string. Be careful -- the onus
is entirely on you to use your variables sensibly.

Bear in mind that the range of numbers that Inform handles is quite small.
For example, if you multiply 1000 by 1000 in Inform, the result isn't one
million: it's 16960, and you don't get any warning that an overflow has
occurred.

More information in
the DM: §2.2 §2.3

More information
in the DM: §1.4

http://www.inform-fiction.org/manual/html/s2.html#s2_2
http://www.inform-fiction.org/manual/html/s2.html#s2_3
http://www.inform-fiction.org/manual/html/s1.html#s1_4

4 · Dabbling in Data

 50

What about fractions and decimals?

Inform deals only in integers -- whole numbers, without a decimal point. If you type this:

 X = 25 / 4;

then Inform rounds down the answer and sets X to 6. Worse, if you type this:

 X = 6.25;

then Inform looks at object number 6 (usually compass) and sets X to the value of its
property number 25 (usually list_together). Basically, the value "six and a quarter" doesn't
exist in Inform.

If you really need them, some mathematical extensions are available. Almost always,
however, you'll find that you can rethink what you're trying to do so that integer arithmetic
is sufficient.

How do global and local variables differ?

You can declare a global variable, capable of holding a single value, with this directive:

 Global globalCount = 42;

A global variable is accessible from anywhere in the program, which is what primarily
distinguishes it from a local variable -- one declared within a routine -- which can be used
only within that routine:

 [myRoutine singleCount; ...];

The other significant point of difference is that, once set, the value stored in a global variable
remains the same until you explicitly change it. Local variables, on the other hand, are reset
every time that you call the routine, either by an argument supplied as part of the call or to
zero. Think of it this way: any routine can define up to seven local variables, which double as
the incoming argument values:

 [MyRoutine V1 V2 V3 V4 V5 V6 V7; ...];

Each time that you call myRoutine() -- without any arguments -- all seven variables are
initialized to zero before the routine's code is executed. If instead you call, for example,
myRoutine(100,200,300) then V1, V2 and V3 are initialized to those three values, while the
remaining four variables are set to zero.

What does an array provide?

An array behaves like a global variable, but is capable of holding several values rather than
just one. So, you could write, for example:

 Array multiCount --> 10;

to give yourself ten global variables multiCount-->0, multiCount-->1 ... multiCount-->9.
Now clearly there's no advantage whatsoever in bundling together a pile of unrelated globals
into an array -- you're much better off defining separate globals with meaningful names. The
power of an array comes when you find yourself in a position to manipulate the appropriate
variable using that 'index' number at the end.

It's rare, however, for newcomers to find themselves in that
position. You can safely ignore the use of arrays until you've
written a fair bit of Inform code and have built up your
confidence in the way that the language works.

More information in
the DM: §1.5 §1.7

More information
in the DM: §2.4

There's helpful introduction
by Zak McKracken and Sonja
Kesserich to creating and
initializing arrays

http://www.inform-fiction.org/extensions/maths.html
http://www.inform-fiction.org/manual/html/s1.html#s1_5
http://www.inform-fiction.org/manual/html/s1.html#s1_7
http://www.inform-fiction.org/manual/html/s2.html#2_4
http://www.onyxring.com/informguide.asp?article=41
http://www.onyxring.com/informguide.asp?article=41

 4 · Dabbling in Data

 51

Note that Inform has no concept of a local array, one that is accessible only within a routine.

What's an 'unsigned' number?

In an Inform game, each number is stored as a pattern of binary digits (bits), with sixteen
bits being grouped together to form a 'word'. Since each bit in a word can have only two
states -- 0 and 1 -- the sixteen of them can be combined in 65536
(=2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2) different patterns. By a widely-accepted
convention, those patterns are logically associated with two series of 65536 decimal
numbers: signed numbers ranging from -32678 upwards through 0 and on to 32767; and
unsigned numbers ranging from 0 up to 65535. Note that the words 'signed' and 'unsigned'
refer only to the way that a bit pattern is interpreted as a decimal number, not to the way
that it is stored.

Here are some of the patterns, showing how they are associated with signed and unsigned
numbers ($$ is Inform's way of introducing a binary value). You'll notice that in the first half
of the table -- when the leftmost bit in the pattern of sixteen is 0 -- the signed and unsigned
values are the same. In the second half -- when the leftmost bit is 1 -- they differ radically.
You won't be surprised to hear that that leftmost bit is commonly known as the 'sign bit'.

 Binary bit pattern Signed Unsigned
 decimal decimal

 $$0000000000000000 0 0
 $$0000000000000001 1 1
 $$0000000000000010 2 2
 $$0000000000000011 3 3
 $$0000000000000100 4 4

 $$0111111111111100 32764 32764
 $$0111111111111101 32765 32765
 $$0111111111111110 32766 32766
 $$0111111111111111 32767 32767

 $$1000000000000000 -32768 32768
 $$1000000000000001 -32767 32769
 $$1000000000000010 -32766 32770
 $$1000000000000011 -32765 32771
 $$1000000000000100 -32764 32772

 $$1111111111111100 -4 65532
 $$1111111111111101 -3 65533
 $$1111111111111110 -2 65534
 $$1111111111111111 -1 65535

Actually, you very rarely need worry about this; Inform treats almost all numbers as signed,
so if you take any two values lying in the range -32768..0..32767 and add them, subtract
them, multiply them or whatever, you'll automatically get the expected answer (providing, of
course, that the answer is also in that range).

There's one -- rare -- situation where the difference between signed and unsigned numbers
is important: the conditional operators < and > perform a signed comparison. To explain
what this means, imagine that the variable V1 contains $$0000000000000010, the variable
V2 contains $$1111111111111100, and that you're testing if (V1 > V2). Now, since >
performs a signed compare, V1's value is taken as 2, and V2's value is taken as -4; the test
becomes (2 > -4), which correctly evaluates to true. However... if for some obscure reason
the values in V1 and V2 had been object addresses, or pointers, or some other unsigned
numbers, then the test should have been treated as (2 > 65532), which of course ought to
evaluate to false, so you'll get the wrong answer. The moral is: if you need to test unsigned
numbers, use UnsignedCompare() rather than < and >.

More information
in the DM: §1.4

http://www.inform-fiction.org/manual/html/s1.html#s1_4

4 · Dabbling in Data

 52

What exactly are 'true' and 'false'?

There are two answers to this question. Physically, true is a constant
with a value of '1', and false is a constant with a value of '0'. Logically,
things are slightly different: 'logical' false is still zero, but 'logical' true is
any non-zero value, not just 1.

This distinction matters
when you're using condi-
tional statements like if.
Suppose that you wish to
test a true/false variable
myVar; there are about
eighteen ways in which you
could construct the if
statement. The nine varia-
tions on the left are all
triggered when myVar con-
tains true (1), and the
matching nine on the right
are all triggered when
myVar contains false (0).

However, suppose that
myVar happens to contain
2, or 100, or -1; all values
which, being non-zero, are
logically true. Six of those

eighteen statements don't work as you might have hoped: the three red statements on the
left will fail to trigger, and the three on the right will be triggered unexpectedly. If we also
discount the other eight shaded statements as being over-complex, that leaves only four
'reliable' ways of constructing the statement.

The bottom line is: test against false rather than against true. If you want to do something
when a value is logically true, use either of:

 if (myVar) { ... }
 if (myVar ~= false) { ... }

and the complementary tests, when a value is logically false, should use either of:

 if (~~myVar) { ... }
 if (myVar == false) { ... }

It's occasionally worth remembering that all Inform conditions (for
example, a >= b and MyObj in location) evaluate to either 1 or 0,
values which you can use in an expression. For example, here's a
simple routine, similar to UnsignedCompare(), to compare two
numbers:

 [Compare a b;
 if (a > b) return 1;
 if (a < b) return -1;
 return 0;
];

and here's the same thing using a little arithmetic cunning:

 [Compare a b;
 return (a > b) - (a < b);
];

More information in
the DM: §1.4 §1.8

Testing whether myVar is
'true'

Testing whether myVar is
'false'

if (myVar) { ... } if (~~myVar) { ... }

if (myVar == true) { ... } if (myVar == false) { ... }

if (myVar ~= false) { ... } if (myVar ~= true) { ... }

if (~~myVar == false) { ... } if (~~myVar == true) { ... }

if (~~myVar ~= true) { ... } if (~~myVar ~= false) { ... }

if (~~(myVar == false)) { ... } if (~~(myVar == true)) { ... }

if (~~(myVar ~= true)) { ... } if (~~(myVar ~= false)) { ... }

if ((~~myVar) == false) { ... } if ((~~myVar) == true) { ... }

if ((~~myVar) ~= true) { ... } if ((~~myVar) ~= false) { ... }

More information in
the DM: Table 1B

http://www.inform-fiction.org/manual/html/s1.html#s1_4
http://www.inform-fiction.org/manual/html/s1.html#s1_8
http://www.inform-fiction.org/manual/html/tables.html#tbl1b

 4 · Dabbling in Data

 53

How do I return data values from a routine?

Inform has two types of routine: a standalone routine which is
specified independently, and an embedded routine which is specified
as a property value within an object definition. Every time that you call
a routine, of either type, you get back a single return value (which you're free to ignore if
you want to).

This embedded routine Can be called like this And returns the value

Object myObject
 with ...
 myProperty [;
 print "Hello, world!";
],
 ... ;

false. Note the difference
between the value returned
at the end of a standalone
routine, and that returned
at the end of an embedded
routine like this.

Object myObject
 with ...
 myProperty [;
 print "Hello, world!";
 rtrue;
],
 ... ;

true.

Object myObject
 with ...
 myProperty [;
 print "Hello, world!";
 rfalse;
],
 ... ;

false.

Object myObject
 with ...
 myProperty [;
 print "Hello, world!";
 return;
],
 ... ;

true.

Object myObject
 with ...
 myProperty [;
 print "Hello, world!";
 return expression;
],
 ... ;

myObject.myProperty();
x = myObject.myProperty();
if (myObject.myProperty())
 { ... }
etc

given by evaluating the
expression.

More information in
the DM: §1.7 §3.5

http://www.inform-fiction.org/manual/html/s1.html#s1_7
http://www.inform-fiction.org/manual/html/s3.html#s3_5

4 · Dabbling in Data

 54

This standalone routine Can be called like this And returns the value

[myRoutine;
 print "Hello, world!";
];

true. Note the difference
between the value returned
at the end of a standalone
routine like this, and that
returned at the end of an
embedded routine.

[myRoutine;
 print "Hello, world!";
 rtrue;
];

true.

[myRoutine;
 print "Hello, world!";
 rfalse;
];

false.

[myRoutine;
 print "Hello, world!";
 return;
];

true.

[myRoutine;
 print "Hello, world!";
 return expression;
];

myRoutine();
x = myRoutine();
if (myRoutine()) { ... }
etc

given by evaluating the
expression.

As mentioned above, you can pass up to seven arguments to a routine. Here's a simple
routine, and an example of it being called:

 [myRoutine V1 V2;
 V1 = V1 + V2;
 print V1;
];

 ...

 myRoutine(100,200);

The routine adds together the values of its two arguments, stores the result in the first
argument, and then prints the result -- 300 in our example. Now consider this second call:

 num1 = 100; num2 = 200;
 myRoutine(num1,num2);

How does this second example differ from the first? It doesn't: the two behave identically.
The important thing to note is that, after the call, num1 still contains 100. Although the
value of local variable V1 is changed from 100 to 300 within the routine, this change is not
reflected back to the variable num1 (in technical terms, Inform uses 'call by value' rather
than 'call by reference'). In summary:

• You can supply up to seven argument values when you call a routine. You
can change those values within the routine, but your changes are lost when
you return; they're not visible outside of the routine.

• You get back a single value from a routine call. This value can be set
explicitly by a return, rtrue or rfalse statement, or implicitly by the ']'
which terminates the routine. The implicit return value is true from a
standalone routine, and false from an embedded routine.

Suppose that you need to return more than one value from a routine; are you stuck? As it
happens, no you're not; there's a technique which enables you to return multiple values, but
it requires you to learn about arrays, so you might want to leave it until you're fairly

http://www.firthworks.com/roger/informfaq/#3
http://www.firthworks.com/roger/informfaq/#4

 4 · Dabbling in Data

 55

comfortable with Inform. The trick is to pass the name of an array as an argument; your
routine then has full read/write access to all of the entries of the array, so you can set return
values into as many of those entries as you need. An example will help explain what this
means.

Suppose that you need a routine which takes a single numeric argument 'msm' -- the time
as the number of minutes since midnight -- and returns three values: the hour, the minute
of the hour, and an am/pm indicator. First, we'll write the routine:

 [getClockTime msm result; ! 'result' argument is an array
 if (msm < 0 || msm > 1439) rfalse; ! error: 'msm' argument out of
range
 result-->0 = msm / 60 % 12; ! 'hours' value 0..11
 if (result-->0 == 0) result-->0 = 12; ! 'hours' value 12, 1..11
 result-->1 = msm % 60; ! 'minutes' value 0..59
 result-->2 = (msm > 719); ! false for 'am', true for 'pm'
];

then we'll define an array with three entries, and show the routine in use:

 Array clockTime --> 3;

 if (getClockTime(the_time, clockTime)) {
 if (clockTime-->0 < 10) print "0"; ! leading zero for 'hours'
 print clockTime-->0, ":";
 if (clockTime-->1 < 10) print "0"; ! leading zero for 'minutes'
 print clockTime-->1;
 if (clockTime-->2) print " pm"; else print " am";
 }

Using this technique (and a big enough array), you can overcome both the limit on seven
arguments to a routine, and the restriction of only a single return value.

Where do 'random' numbers come from?

First, what do we mean by a 'random' number? In Inform terms, it's a positive integer in the
range 1..32767, ideally chosen completely by chance. Imagine an enormous roulette wheel,
with 32767 numbered pockets rather than the usual 37 or 38. Spin the wheel and see where
the ball lands: that's our random number.

Except that, using software, it turns out to be really hard to replicate the true randomness of
a perfectly-balanced roulette wheel, where at each spin there's exactly one chance in 32767
of a particular number turning up. Instead, we use a pseudo-random number generator
(PRNG), an algorithm that generates a sequence of numbers whose elements are
approximately independent of each other. Most simple PRNGs (that is, whose size and
complexity is appropriate for a text adventure game) generate each random number by
applying some formula to the number that was generated last time. Let's illustrate this with
a trivial example; to make things easier to understand, we'll restrict our random numbers to
the range 1..10:

 Global prev_rand = 1;

 [trivial_PRNG;
 prev_rand = prev_rand + 7;
 if (prev_rand > 10) prev_rand = prev_rand - 10;
 return prev_rand;
];

4 · Dabbling in Data

 56

Calling trivial_PRNG() repeatedly returns a sequence of numbers -- 8 5 2 9 6 3 10 7 4 1 8
5 2 9 6 3 and so on -- which certainly looks a bit random. Closer inspection reveals a couple
of problems: the numbers are alternately even and odd, and the whole sequence starts again
every time we reach the number 8. The first problem can be solved by using a more
sophisticated formula than our trivial "just add 7", but the second one is an intrinsic
limitation of this sort of PRNG (in technical terms, thanks to wikipedia, "Because any PRNG
run on a deterministic computer is a deterministic algorithm, its output will inevitably have
one property that a true random sequence would not exhibit: guaranteed periodicity."). In
practice, the fact that any sequence of pseudo-random numbers is certain, sooner or later,
to repeat itself isn't usually a problem; what's much more important is using a PRNG
algorithm, better than our trivial_PRNG(), which ensures that there's no obvious pattern
(such as even/odd alternation, or lots of low numbers followed by lots of high numbers) to
the sequence of generated numbers.

Because a PRNG produces each new number by applying some algorithm to the number that
it returned on the previous occasion, it's necessary to establish a starting value before calling
the PRNG for the first time: this initial number is called a seed, and we sometimes use the
phrase "seeding the generator" to refer to the PRNG initialisation process. Just storing a
constant value, as we did with prev_rand = 1;, isn't normally a sensible idea, because that
would mean our sequence of random numbers always starting from that same constant
value and continuing in a predictable fashion. Instead, programs attempt to seed the
generator by picking an initial seed value, for example the current time in milliseconds,
which should be different for each run.

So, based on our rough-and-ready simplification of what 'randomness'
means, we can see how it applies within Inform. The function random()
-- it's built into the Inform language rather than being defined in the
library -- returns a random value, and may be called in two formats:

 random(6); ! Format 1

 random(10, 20, 30, 40); ! Format 2

The first format returns 1, 2, 3, 4, 5 or 6: that is, a random positive integer in the range 1 to
the specified upper limit. Other examples: random(1) always returns 1, random(2) returns
either 1 or 2, and random(32767) returns a value in the range 1..32767 (the largest positive
integer).

The second format returns 10, 20, 30 or 40: that is, a random selection from the set of
specified values; in this instance, we could equally have used 10*random(4). Other
examples:

random(1,1,1,2) returns either 1 or 2 (with a distinct bias towards 1),

random(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47) returns a small prime number,

random(n_obj,s_obj,e_obj,w_obj) returns a compass object,

random("circle","triangle","square","diamond","pentagon") returns the (packed)
address of a string, and

random('red','green','blue') returns the (unpacked) address of a dictionary word.

Note, by the way, that this format accepts only constant arguments – for instance,
random(myVar1,myVar2,myVar3) isn't allowed -- and additionally is not subject to the
normal Inform restriction that a routine is limited to seven arguments. Both of these oddities
are side-effects of the compiler transforming what looks like a normal routine call into some
customised Z-code construct.

More information
in the DM:§1.14

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://www.inform-fiction.org/manual/html/s1.html#s1_14

 4 · Dabbling in Data

 57

As stated above, the PRNG is automatically seeded at the start of each
game to what is hopefully an unpredictable value, thus ensuring that a
game which includes calls to random() will behave differently each time
that it's run. Usually that's what the author wants: there's little point in
writing a puzzle involving chance events if their outcome is always
identical and so can be anticipated by the player. There is an exception to this preference for
unpredictability, however, and that's when you're testing a game prior to release. In this
situation, it's often useful to REPLAY a script containing a master-list of commands which
progress through the entire game, exercising every feature. For the script to be unfazed by
'random' events, you need those events to happen identically on each replay: that is, you
need your sequence of random numbers to become predictable. This is easily achieved by
seeding the PRNG to a constant value rather than one which changes each time. Inform
provides three more random() formats to cover this situation:

 random(-1000); ! Format 3 (argument's absolute value in range
1000..32767)

 random(-100); ! Format 4 (argument's absolute value in range
1..999)

 random(0); ! Format 5

The third format, which returns zero, seeds the PRNG with a starting
value of 1000. Subsequent calls using Formats 1 and 2 then return a
predictable sequence of 'random' numbers which are repeatable
every time that the game runs.

The fourth format, which also returns zero, seeds the PRNG in such a way that subsequent
calls using Formats 1 and 2 then return values based upon the simple rising sequence
1,2,...,99,100,1,2,...,99,100,1.2...; this too is repeatable every time that the game runs.
The fifth format, which again returns zero, re-seeds the PRNG so that subsequent calls using
Formats 1 and 2 revert to unpredictable random results.

At this point, we need to highlight a couple of potential availability problems. Format 4,
whose behaviour is undocumented in the DM4, is Graham's 'suggestion' hidden in the
Remarks at the end of Section 2 of the Z-Machine Standards Document; this algorithm is not
honoured by all interpreters, which tend to treat this format as though it was Format 3.
Format 5, similarly undocumented in the DM4, is flagged in Section 15 of the Z-Machine
Standards Document as being considered illegal by most interpreters, though this is much
less true today (the Standard dates from 1997). The important point is: just because the
PRNG in the interpreter that you use for testing your game behaves in a certain fashion, you
cannot assume that your audience will encounter the same behaviour in the interpreters that
they use for playing your game.

And the difference in behavior associated with Format 4 leads to another problem. The
library defines the debugging verb RANDOM thus:

 [PredictableSub i;
 i = random(-100);
 "[Random number generator now predictable.]";
];

 Verb meta 'random'
 * -> Predictable;

If you test your game using an interpreter like Frotz, which honours Format 4 by generating
a simple rising sequence, then you'll get very different behaviour than if you test with an
interpreter which doesn't distinguish between Formats 3 and 4, generating a true (albeit
predictable) random sequence. The library doesn't provide a standard way of specifying this
latter sequence, an omission which you might wish to remedy by added this at the end of
your game:

More information
in the DM: §7.1

More information in the
Z-Machine Standards
Document: §2.4 §15

http://www.inform-fiction.org/manual/html/s7.html#s7_1
http://www.inform-fiction.org/zmachine/standards/z1point0/sect02.html#four
http://www.inform-fiction.org/zmachine/standards/z1point0/sect15.html#random

4 · Dabbling in Data

 58

 #Ifdef DEBUG;

 [RandomUnpredictableSub;
 random(0);
 "[Random number generator now unpredictable.]";
];

 [RandomSerialSub s;
 if (s == 0) s = 100;
 random(-s);
 "[Random number generator now serial.]";
];

 [RandomRepeatableSub s;
 if (s == 0) s = 1000;
 random(-s);
 "[Random number generator now repeatable.]";
];

 [RandomSeedSub;
 if (noun < 0) noun = -noun;
 switch (noun) {
 0: RandomUnpredictableSub();
 1 to 999: RandomSerialSub(noun);
 default: RandomRepeatableSub(noun);
 }
];

 Extend 'random' replace
 * -> RandomSerial
 * 'serial'/'s//' -> RandomSerial
 * 'repeatable'/'r//' -> RandomRepeatable
 * 'unpredictable'/'u//' -> RandomUnpredictable
 * number -> RandomSeed;

 #Endif; ! DEBUG

Finally, here are a couple of ways of asserting some control over your random numbers
despite the vagaries of interpreters' PRNGs. Jim Fisher has an article on Randomizing
Random, which shows a technique for obtaining a good random seed value. Roger Firth's
random.h extension, available from the Archive, provides a complete replacement for the
PRNG, one that behaves the same across all interpreters.

http://www.codingmonk.com/inform/Articles/tabid/95/Default.aspx?article_id=12
http://www.codingmonk.com/inform/Articles/tabid/95/Default.aspx?article_id=12
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html

 5 · Operating on Objects

 59

5 · Operating on Objects

Is a 'room' a special sort of object?

No: a 'room' is simply an Inform object which the player can enter by some means, and
which doesn't have a parent. There’s nothing more to it than that.

How does Inform distinguish nouns from adjectives?

It doesn't. In an object's name property, you need to list all of the words that a player might
think to use when referring to that object. For example, in this object, introduced when
talking about apostrophes and quotes:

 Object old_man "grumpy old man"
 with name 'man' 'grumpy' 'cross' 'old' 'elderly' 'ancient' 'gnome',
 description "The grumpy old man stands silently in the corner.",
 ...
 has animate;

you'll see there are two nouns -- 'man' and 'gnome' -- and five adjectives.
The player could use these seven words (also THE which is always
available) in every possible combination, both sensible (GRUMPY OLD
MAN, THE GNOME, THE ELDERLY MAN, CROSS GNOME) and not so sensible (THE ANCIENT
CROSS, GRUMPY GRUMPY, MAN OLD ELDERLY ANCIENT GNOME). In all of these cases,
Inform will infer that the player is referring to the "grumpy old man" object. As it happens,
players have become accustomed to this behaviour, and don't find it much of a problem.

Occasionally, you'll create a set of objects with similar names, in which circumstance having
Inform react to nouns more strongly than to adjectives is helpful to players. (Without such
special treatment, your players may have difficulty picking up, for example, a JEWEL which
occurs in the same location as a JEWEL BOX.) Neil Cerutti's pname.h from the Archive offers
a good solution in these circumstances.

When should I use scenery/static/concealed attributes?

You affect an object's behaviour using these attributes. The main differences are:

attribute
Does LOOK m

ention it?
Can you TAKE it?

Does TAKE ALL
attempt it?

scenery no no -- "hardly portable" yes (annoyingly)

static yes no -- "fixed in place" yes

concealed no
yes -- listed in your inventory, but

disappears again if you drop it
no

none of these yes yes yes

One of the main uses of concealed is for something that can be 'discovered' during the
game, for example when you SEARCH another object. Using this technique, you might use
an after property on the object being searched to remove the hidden object's concealed
attribute, thereby bringing it into view. The alternative method is to use that same after
property to bring the hidden object into the room from elsewhere; this has the disadvantage
that second-time-around players still need to SEARCH even though they know that the
hidden object is present. (On the other hand, if you allow them this shortcut, you need to
remove the concealed attribute anyhow if they do TAKE without SEARCH.)

More information
in the DM: §28

http://www.firthworks.com/roger/informfaq/ll.html#5
http://www.inform-fiction.org/manual/html/s28.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html

5 · Operating on Objects

 60

On the subject of scenery and static, you occasionally run into trouble with the parser
being too helpful. If the player types a command like TAKE without specifying an object, the
parser usually asks "What do you want to take?", which is fine. If, however, there is only one
object in scope, the parser guesses that that must be what you want, even if it's non-
takeable. For example:

 >TAKE
 (the writing desk)
 The writing desk is too heavy for that.

The best way to avoid this is by ensuring that there's always a choice of objects with the
same attribute level -- two without static/scenery, or failing that two with static, or as a
last resort two with scenery.

How can I tell that one object is 'within' another?

A typical Inform program defines dozens of objects: rooms, furniture, pieces of scenery,
Non-Player Characters (NPCs), artefacts of all shapes and sizes. Rather than floating
independently in some abstract space, most of those objects are linked by formal (but fluid)
relationships. An important part of Inform programming is managing the changes in those
relationships: keeping track of which objects are 'in' or 'on' other objects at each turn in the
game.

For example, you might visualize the relationship between several objects in a bank thus. In

this diagram, the money, diamond and
certificate are in the strongbox, which is in the
safe (along with the will), and the safe is in the
same room as the counter, on which is a key.
It's common to talk about an object's parent
and its children: thus, the safe's parent is the
bank, and its children are the strongbox and
the will. If the player was to enter the bank and
type TAKE THE KEY, the diagram would need
redrawing to show the player as a child of the
bank, and the key as a child of the player.

The diagram above shows a conceptual representation in which each object has a single
parent object (or nothing) above it, and zero, one or more child objects below it. However,
this representation doesn't precisely reflect the way in which Inform stores its data. The
relationship between Inform objects -- the object tree -- is actually defined by three
pointers. Each object has an 'upwards' pointer towards its parent, a 'downwards' pointer
towards its child, and a 'sideways' pointer towards its sibling; a pointer contains the constant
nothing if there is no object above, below or to the side.

This system of pointers means that the set of objects in the bank is actually connected as
shown alongside. You might notice that there is a small discrepancy between the conceptual
model -- in which an object like the strongbox can have several children -- and the physical
model, where an object has one (eldest) child, with any younger children being linked out to
the side. The built-in functions parent(), sibling() and child() reflect this physical view:

 parent(bank) == nothing
 sibling(bank) == nothing
 child(bank) == counter

 parent(counter) == bank
 sibling(counter) == safe
 child(counter) == key

 parent(safe) == bank
 sibling(safe) == nothing
 child(safe) == strongbox

and so on.

 5 · Operating on Objects

 61

You can change object relationships with the move and remove statements, but it's
relatively rare that you need to do so -- most of the time, the Library does everything
necessary to move objects around the tree. What you frequently do need is the ability to
discover where an object is currently located. You can test whether one object is a child of
another object -- its parent -- using either of:

 if (parent(c_obj) == p_obj) { ... }
 if (c_obj in p_obj) { ... }

You can't reliably use this test:

 if (c_obj == child(p_obj)) { ... }

because the child() function returns only an object's eldest child, rather than a list of all
children; for example (safe == child(bank)) evaluates to false.

The first two tests, although reliable, are also limited in scope: they concern themselves only
with an object's immediate children. So, (parent(safe) == bank) and (safe in bank) both
evaluate to true, but (parent(strongbox) == bank) and (strongbox in bank) both evaluate to
false -- the strongbox object is a grandchild of the bank object, not a direct child.

To get round this problem, you can use the Library routine IndirectlyContains():

 if (IndirectlyContains(p_obj, c_obj)) { ... }

This routine returns true if p_obj is a parent, or grandparent, or great-grandparent, or
great-great-grandparent..., of c_obj; that is, if c_obj lies anywhere below p_obj in the tree.
So, IndirectlyContains(bank,strongbox) evaluates to true.

A related routine, CommonAncestor(c_obj1, c_obj2), returns the nearest object which has
a parental relationship to both c_obj1 and c_obj2, or nothing. For example,
CommonAncestor(diamond,will) would return the safe.

How do I get rid of an object in mid-game?

You don't actually delete an unwanted object during the course of a
game; you just reposition it out of the way so that the player won't ever
encounter it. You usually do this by making its parent nothing, which
detaches it from the object tree. However, you can't type move myObj to nothing; since
nothing isn't an object; instead you use:

 remove myObj;

The removed object now lurks out of sight, until either the game ends or you choose to
resurrect it. To bring the object back into play, you simply need something like:

 move myObj to location;

That's really all there is to it, though while we're here we'll mention a few related points. You
can test whether an object has been removed by either of these:

 if (myObj in nothing) { ... }
 if (parent(myObj) == nothing) { ... }

but what you can't so easily do is identify all of the removed objects. This is a valid
statement:

 objectloop (x && x in nothing) { ... }

but it finds too much: several Library objects and all of the rooms, as well as any objects
which you've shifted out of play. If you need to loop through out-of-play objects, a better
approach is not to use the remove statement. Instead, create an inaccessible room --
commonly called "Limbo" -- and move unwanted objects into it. This is all you need:

More information in
the DM: §3.2 §3.4

More information
in the DM: §3.4

http://www.inform-fiction.org/manual/html/s3.html#s3_2
http://www.inform-fiction.org/manual/html/s3.html#s3_4
http://www.inform-fiction.org/manual/html/s3.html#s3_4

5 · Operating on Objects

 62

 Object limbo "Limbo"
 with description "How the hell did you get in here?";
 ...
 move myObj to limbo;
 ...
 objectloop (x in limbo) { ... }

If you've given myObj a found_in property -- so that it magically pops
up in various rooms as the player visits them -- you've got a little more
work to do. If you just move or remove such an object out of play, the
Library will promptly transport it back again. You need to prevent this, by applying the
absent attribute:

 move myObj to limbo; ! or: remove myObj;
 give MyObj absent;

Finally, the rather more complex business of creating and deleting objects
during play. We'll skip most of the detail and just sketch the outline of
dynamic object manipulation. First, you need a class from which to create
your objects (the "10" specifies the maximum number which can be in play concurrently):

 Class myObj(10)
 with ... ;

and then you use statements like these to add a new object to the game, and later to get rid
of it again:

 x = myObj.create();
 ...
 myObj.destroy(x);

Note that destroy() works only for objects which have previously been added using
create(), not for normal objects which have existed throughout the game.

What are the various 'description' properties for?

Two of the more popular commands during a game are LOOK (or L) and EXAMINE or (X).
Here's a typical example:

 >LOOK

 Dingy hall
 Steps lead down into darkness.

 You can see a trunk (which is closed) and a flashlight here.

 >EXAMINE THE TRUNK
 The trunk is large enough to get inside.

Here you can see the ubiquitous 'description' property doing its stuff: LOOK displays the
current location's name, its description and a list of its notable contents, while EXAMINE
displays the description of the specified object:

 Object hallway "Dingy hall"
 with description "Steps lead down into darkness.",
 d_to cellar,
 has light;

 Object -> "trunk"
 with name 'trunk' 'chest' 'box',
 description "The trunk is large enough to get inside.",
 has static container enterable openable ~open;

More information
in the DM: §8

More information
in the DM: §3.11

http://www.inform-fiction.org/manual/html/s8.html
http://www.inform-fiction.org/manual/html/s3.html#s3_11

 5 · Operating on Objects

 63

 Object -> "flashlight"
 with name 'flashlight' 'torch',
 description "It's a battery-powered flashlight, of the sort that
 switches on and off.",
 after [;
 SwitchOn: give self light;
 SwitchOff: give self ~light;
],
 has switchable ~on ~light;

The library provides a number of standard object properties which are used in specific
circumstances to display descriptive information about the object;
description is the one most commonly found, but the others all have
their place.

This table summarises their usage:

Property For a room For an object

description The first text (after the room's name)
displayed by LOOK in that room, and
on initial entry to the room.

Displayed by EXAMINE of the object.
This is the only property which is
consulted by the EXAMINE command;
all of the other entries in this table are
associated with the LOOK command.

inside_description Displayed after the room's
description text.

For an enterable object which the
player is inside, displayed after the
parent room's description text (if the
room is still visible) or instead of it (if
not). Over-rides initial and
when_open/when_closed.

describe The first text (after the room's name)
displayed by LOOK in that room, and
on initial entry to the room. Over-rides
description (but provides no
additional functionality and so is
effectively redundant for a room).

Displayed after the parent room's
description text.

If this property is a string or a routine
returning true, any of the properties
below are ignored.

initial Displayed before the room's name
when the player moves to that room.

For an object which hasn't moved,
displayed after the parent room's
description text. Once the object has
moved, this property is ignored and
the object is included in the "You can
[also] see..." list.

when_on Ignored. For a switchable object which has
on, displayed after the parent room's
description text. Over-rides initial.

when_off Ignored. For a switchable object which hasn't
on, displayed after the parent room's
description text. Over-rides initial.

when_open Ignored. For a door or container object which
has open, displayed after the parent
room's description text. Over-rides
initial and when_on/when_off.

when_closed Ignored. For a door or container object which
hasn't open, displayed after the
parent room's description text. Over-
rides initial and
when_on/when_off.

More information
in the DM: §26

http://www.inform-fiction.org/manual/html/s26.html

5 · Operating on Objects

 64

none of these - Displayed in the list of "You can [also]
see..." objects at the end of the room
description (except for concealed or
scenery objects).

It's hard to predict the precise presentation -- trial and error is your best bet -- but as a rule-
of-thumb, the library automatically prints a newline before each property value (except for
describe), and also prints one after each property whose value is a string (if a property
value is a routine, the terminating newline is under your control).

Here's our previous example, now ornamented with a few of these properties:

 Object hallway "Dingy hall"
 with description "Steps lead down into darkness.",
 d_to cellar,
 has light;

 Object -> "trunk"
 with name 'trunk' 'chest' 'box',
 description "The trunk is large enough to get inside.",
 inside_description "From the inside, the trunk doesn't
 now seem so big.",
 when_open "An open trunk sits in one corner.",
 when_closed "The trunk in the corner looks like it can be opened.",
 has static container enterable openable ~open;

 Object -> "flashlight"
 with name 'flashlight' 'torch',
 description "It's a battery-powered flashlight, of the sort
 that you switch on and off.",
 after [;
 SwitchOn: give self light;
 SwitchOff: give self ~light;
],
 when_on "The flashlight provides a faint glimmer.",
 has switchable ~on ~light;

And this is the result:

 >LOOK

 Dingy hall
 Steps lead down into darkness.

 The trunk in the corner looks like it can be opened.

 You can also see a flashlight here.

 >SWITCH ON THE FLASHLIGHT
 You switch the flashlight on.

 >OPEN THE TRUNK
 You open the trunk.

 >LOOK

 Dingy hall
 Steps lead down into darkness.

 An open trunk sits in one corner.

 The flashlight provides a faint glimmer.

 >ENTER TRUNK
 You get into the trunk.

 >LOOK

 Dingy hall (in the trunk)
 Steps lead down into darkness.

 The flashlight provides a faint glimmer.

 5 · Operating on Objects

 65

 From the inside, the trunk doesn't now seem so big.

How are plural objects managed?

While most of your game objects will be singular -- A SHINY SWORD, AN ANCIENT BRASS
LANTERN, THE GRUMPY OLD MAN -- you will occasionally need to represent plurals: multiple
objects such as A HANDFUL OF BEANS, THREE GOLD COINS, A BRACE OF PHEASANTS. The
Library provides several standard properties and attributes which are useful when dealing
with plural objects; here are some of the basic techniques:

Mass noun (singular)

For example: gunpowder, machinery, foliage

Referenced by the player as: THE GUNPOWDER, SOME GUNPOWDER, IT
Referenced by the game as: You can see some gunpowder here.

You see nothing special about the gunpowder.
That's not something you can close.
You can't wear that!

Example:

 Object -> "gunpowder"
 with name 'gunpowder' 'blasting' 'powder',
 article "some";

Use the article property: the game understands the object as singular, but incorporates the
possibility of using a special prefix in place of "a" or "an" -- in this case, "some". The article
property lets you define whatever word or group of words will best suit your needs. In the
example, you could replace "some" with "lots of", "several tons of", "a few grains of", etc.

Mass noun (plural)

For example: instructions, grapes, scissors

Referenced by the player as: THE INSTRUCTIONS, SOME INSTRUCTIONS, THEM
Referenced by the game as: You can see some instructions here.

You see nothing special about the instructions.
They're not something you can close.
You can't wear those!

Example:

 Object -> "instructions"
 with name 'instructions',
 has pluralname;

Use the pluralname attribute: the game marks the object as plural, automatically changing
pronouns and articles as needed.

The name property of the object should list only plural names and synonyms, because the
pluralname attribute tells the parser and the library to consider the object as plural in all
cases. Consider the following (erroneous) code:

More information
in the DM: §26

More information in
the DM: §26 §29

http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s29.html

5 · Operating on Objects

 66

 Object -> "instructions"
 with name 'sheet' 'of' 'instructions',
 article "a sheet of",
 has pluralname;

Here the player could type, for example, OPEN SHEET (which is singular) and get the
mismatched plural response "They're not something you can open.". For a way round this,
see the next example.

Singular/plural noun

For example: string of pearls, sheet of instructions, bunch of grapes

Referenced by the player as: THE STRING, THE STRING OF PEARLS, THE PEARLS
Referenced by the game as: You can see {a string of pearls|some pearls

on a string} here.
{That's|They're} not something you can close.

Example:

 Object ->
 with name 'string' 'of' 'pearls' 'pearl',
 parse_name [wd num singular;
 for (wd=NextWord() : WordInProperty(wd,self,name) : wd=NextWord()) {
 num++;
 if (wd == 'string') singular = true;
 }
 if (num) {
 if (singular) give self ~pluralname;
 else give self pluralname;
 }
 return num;
],
 short_name [;
 if (self has pluralname)
 print "pearls on a string";
 else print "string of pearls";
 rtrue;
],
 has ~pluralname;

If you supply a parse_name property, it overrides any name property. These three
examples work identically:

 name 'string' 'of' 'pearls',

 parse_name [wd num;
 for (wd=NextWord() :
 wd=='string' or 'of' or 'pearls' :
 wd=NextWord()) num++;
 return num;],

 name 'string' 'of' 'pearls',
 parse_name [wd num;
 for (wd=NextWord() :
 WordInProperty(wd,self,name) :
 wd=NextWord()) num++;
 return num;],

The advantage of a parse_name property is the capability of recognising certain trigger
words, and then modifying or extending the standard behaviour. Here, EXAMINE STRING
makes the object singular, while EXAMINE PEARLS makes it plural.

More information in
the DM: §26 §28

http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s28.html

 5 · Operating on Objects

 67

The printable name is supplied by a short_name property rather than being given on the
object's header line, so that it too can toggle between singular and plural forms.

Enumerated set of indistinguishable nouns #1

For example: sticks of dynamite, throwing knives

Referenced by the player as: THE STICK, TWO [THREE,4,...] STICKS, ALL STICKS, IT
Referenced by the game as: You can see some sticks of dynamite here.

You see nothing special about the stick of dynamite.
That's not something you can close.
You can't wear that!

Example:

Class TNT
 with name 'stick' 'sticks//p' 'of' 'dynamite' 'tnt',
 short_name "stick of dynamite",
 plural "sticks of dynamite";

TNT ->;
TNT ->;

Make the objects 'indistinguishable' by creating a Class definition which includes a
short_name property (to tell the game how to name a single instance of the object) and a
plural property (to tell the game how to name a group of these objects). Add the modifier
//p to the plural dictionary word in the name property.

The player can’t refer to THEM when they are grouped.

Most verbs (except TAKE, DROP) produce: "You can’t use multiple objects with that verb." if
the player refers to more than one stick.

Enumerated set of indistinguishable nouns #2

For example: gold coins

Referenced by the player as: THE COIN, TEN [100,1000,...] COINS, ALL COINS, THEM
Referenced by the game as: You can see one thousand gold coins here.

You see nothing special about the gold coins.
They're not something you can close.
You can't wear those!

More information
in the DM: §29

http://www.inform-fiction.org/manual/html/s29.html

5 · Operating on Objects

 68

Example:

Class Money(10)
 with name 'money' 'cash' 'gold',
 sing_name 'coin' 'dollar' 'zorkmid',
 plur_name 'coins' 'dollars' 'zorkmids',
 parse_name [wd qty b p s;
 qty = TryNumber(wn);
 if (qty >= 0) { b++; wn++; }
 wd = NextWord();
 while (wd) {
 if (WordInProperty(wd,self,name)) b++;
 else
 if (WordInProperty(wd,self,plur_name)) p++;
 else
 if (WordInProperty(wd,self,sing_name)) s++;
 else break;
 wd = NextWord();
 }
 if (qty < 0) ! TryNumber() didn't find a number
 if (s > p) qty = 1;
 else qty = self.current_qty;
 if (p+s) self.request_qty = qty;
 return b+p+s;
],
 current_qty 0, ! Number of coins in this object
 request_qty 0, ! Number requested by player
 article [;
 if (self.current_qty == 1) print "a single";
 else print (number) self.current_qty;
 rtrue;
],
 short_name [;
 if (self.current_qty == 1) print "gold coin";
 else print "gold coins";
 rtrue;
],
 before [o; ! Before any cmd for these coins
 if (self.request_qty == 0) self.request_qty = self.current_qty;
 if (self.request_qty > self.current_qty)
 return L__M(##Miscellany,42,self.current_qty);
 if (self.request_qty < self.current_qty) {
 o = self.current_qty - self.request_qty;
 o = Money.create(o, parent(self));
 if (o == nothing) "BUG: Money creation failed!";
 self.current_qty = self.request_qty;
 self.request_qty = 0;
 }
],
 each_turn [o;
 self.request_qty = 0;
 objectloop (o ofclass Money && parent(o) ~= Money && o ~= self)
 if (parent(o) == parent(self)) {
 self.current_qty = self.current_qty + o.current_qty;
 Money.destroy(o);
 }
],
 adjust [qty;
 if (qty >= 0) self.current_qty = self.current_qty + qty;
 else {
 qty = -qty;
 if (qty < self.current_qty)
 self.current_qty = self.current_qty - qty;
 else Money.destroy(self);
 }
],
 create [qty loc;
 self.current_qty = qty;
 self.request_qty = 0;
 if (loc) move self to loc;
],
 has pluralname;

More information
in the DM: §3.11

http://www.inform-fiction.org/manual/html/s3.html#s3_11

 5 · Operating on Objects

 69

The previous approach works well for relatively small numbers of indistinguishable items
(say, fewer than 50), but because each item is an individual object, doesn't perform well for
larger quantities. In a situation where the player has, for example, 1000 coins which he can
spent, give to beggars, throw into fountains, and so on, you need something different (and
more complex). This example uses a single object to represent all 1000 coins, which is fast
and economical of Z-machine memory but causes some other problems: basically, you need
to do a lot of the work that in the previous approach was done automatically by the library.

We supplement the standard name property (which contains 'neutral' words) with two of our
own: sing_name and plur_name. Then, we use a parse_name routine to match against
all of those, and also to look for a possible number typed first (TEN DOLLARS, 100 GOLD
COINS); the routine stores such a value in the request_qty property as well as returning
the number of matched words in the usual way. If no explicit number is typed, request_qty
is set to either 1 (if the player typed just COIN), or -- if he typed COINS -- to the total
number of coins available (which is stored in current_qty). We also need our own article
and short_name properties, to handle the value in current_qty.

Having a single object for all 1000 coins is fine... until the player decides to DROP 50 COINS.
At that point we need two objects: one representing the 50 coins on the ground, the other
representing the 950 coins which the player is still holding. So, our before property creates
a new object of the Money class, and adjust the current_qty properties of both objects.
Then, the action continues... but only affects the object containing the specified quantity.
The new object, respresenting the remainder of the coins, stays in the player's possession.

So far, so good... but what if the player decides to TAKE 50 COINS back into his inventory,
or to DROP 100 COINS next to the original 50? We've now got two Money objects, where we
want only one. The each_turn property takes care of this; it runs each turn looking for
multiple Money objects with the same parent, and it combines them back into a single
object.

Two final properties: adjust is provided so that other objects can add and subtract from
current_quantity, destroying the Money object if that value reaches zero (adjust isn't used
here, but might come into play if the player typed something like BUY BEANS FROM
PEDDLER). And create brings a new Money object into being: we use it in the before
property, and also in our Initialise routine -- the call is simply Money.create(1000,
player); -- to give the player his initial stash of cash. Note that we have to use this
technique, instead of defining an object's initial location within the object tree, because we
are creating and destroying objects dynamically. The first line -- Class Money(10) -- says
that up to ten separate collections of coins can be lying around at any one time; the actual
number of coins in each of those collections is immaterial.

Grouped set of indistinguishable nouns

For example: fuses, grains of rice, rusty nails

Referenced by the player as: THE FUSE, THE FUSES, IT
Referenced by the game as: You can see several fuses here.

You see nothing special about the fuse.
That's not something you can close.
You can't wear that!

Example:

Class Fuse
 with name 'fuse' 'fuses//p',
 short_name "fuse",
 list_together [;
 if (inventory_stage == 1) {
 print "several fuses";
 if (c_style & NEWLINE_BIT) new_line;
 rtrue;
 }
];

More information
in the DM: §27

http://www.inform-fiction.org/manual/html/s27.html

5 · Operating on Objects

 70

Fuse ->;
Fuse ->;

These are objects where two or more in the same place forms a group of indeterminate size.
Define a Class, as in the previous example, and supply a list_together property with the
listing rules you want to apply; this overrides the default library operation that would try to
number how many instances are grouped together.

A terminating new_line is needed when the player's inventory includes "several fuses", but
not when "several fuses" appear at the end of a room's description.

The player can’t refer to THEM when they are grouped.

Inexhaustible set, with ability to reference a single instance

For example: matches, pad of paper, bag of sweets

Referenced by the player as: THE MATCHES, THE MATCH
Referenced by the game as: You can see some matches here.

You see nothing special about the matches.
They're not something you can close.
You can't wear those!

Example:

Object -> "matches"
 with name 'matches',
 before [; Burn: <<Burn (child(self))>>;],
 has pluralname transparent;

Object -> -> "match"
 with name 'match',
 before [; PronounNotice(parent(self));
 Burn: return burning_match.light_me();
 default: <<(action) (parent(self)) second>>;
],
 has pluralname;

Object burning_match "burning match"
 with name 'burning' 'lit' 'match',
 before [; Burn: "You've already lit one.";],
 light_me [;
 if (parent(self)) <<Burn self>>;
 PronounNotice(self); move self to player;
 StartTimer(self, 4);
 "You light a match.";
],
 time_left 0,
 time_out [;
 remove self;
 "^The match burns to nothing.";
];

These are objects which exist as a group of infinite size, from which at any time no more
than one instance can be detached: references to a single instance are normally taken as
referring to the whole group, except where the action makes more sense applied to the
individual. For example, TAKE MATCH, DROP PAPER and EXAMINE SWEET might apply to the
group, while LIGHT MATCH, FOLD PAPER and UNWRAP SWEET might be more applicable to a
single instance.

A single-instance object is defined as a child of the group object, which is given the
transparent attribute to bring the child into scope (though not into view). The child
delegates all actions other than Burn up to its parent, while the parent delegates a Burn
action down to the child.

More information in
the DM: §6 §20

http://www.inform-fiction.org/manual/html/s6.html
http://www.inform-fiction.org/manual/html/s20.html

 5 · Operating on Objects

 71

The act of lighting a match brings a new burning_match object temporarily into play; the
processing is handled by that object's own light_me property, thus encapsulating the nitty-
gritty details within the one place.

Virtual nouns

For example: cage of birds, bowl of fish, shopping list

Referenced by the player as: THE CAGE, THE BIRDS, IT
Referenced by the game as: You can see a cage of birds here.

You see nothing special about the bird cage.
That's not something you can close.
You can't wear that!

Example:

Object ->
 with name 'bird' 'birds' 'cage',
 short_name [;
 if (self.number) print "cage of birds";
 else print "bird cage";
 rtrue;
],
 invent [;
 if (inventory_stage == 1)
 switch (self.number) {
 0: print "an empty bird cage";
 1: print "a cage containing a bird";
 2: print "a pair of birds in a cage";
 default: print "a cage full of birds";
 }
 rtrue;
],
 number 2;

Occasionally you encounter a set of items, variable in number, which can't exist in isolation,
only in the context of some other object. To avoid coding lots of objects, you might be able
to simply instantiate the items by using their parent's short_name and invent properties.

Most of these examples are actually fairly simplistic, with
even the relatively intricate Gold Coins object having some
gaps in its implementation. There are often object-specific
complexities -- typically related to manipulating them
singly, in combination and as a group -- which mean that
significant additional coding is needed. If you are trying to
model real-world handling of a tricky subject like, for
example, containers of liquid, you will need considerable
patience to get things working properly; trial and error is
usually the best approach.

Why do my pronouns keep changing?

The library manipulates four pronouns -- IT, HIM, HER and THEM -- on the player's behalf, so
that the most recently-mentioned objects match the appropriate pronouns. So far, so good:
if you EXAMINE THE GRUMPY OLD MAN, that assigns the HIM pronoun to mean the old_man
object; GIVE AXE TO HIM makes IT refer to the axe, and so on. You can use the PRONOUNS
verb to check this out; the game's behaviour is nicely predictable.

Where, arguably, things start to fall apart is having the library adjust the pronoun
assignments without your knowledge. After you type INVENTORY, then typically IT now
refers to the last item that the player is carrying; after you type LOOK then typically IT refers
to the item listed last in the room's contents. The other pronouns are similarly adjusted if
there are NPCs or plural objects present. This can be highly confusing, especially since a
TAKEn object appears first in the inventory, and a DROPped one first in the room
description:

More information
in the DM: §26

Other examples of plural objects
include: a pair of gloves (DM
Exercise 14); the Scrabble pieces
(DM Exercise 67); various coins
(DM Exercises 68 and 69, also
Balances.inf); and a book of
matches, a box of candles and a
pile of blocks (all from
Toyshop.inf).

http://www.inform-fiction.org/manual/html/s26.html

5 · Operating on Objects

 72

 You can see a rusty axe, a bomb, some cartridges, a dagger and an
 executioner here.

 >X AXE
 You see nothing special about the rusty axe.

 >TAKE IT
 Taken.

 >INV
 You are carrying:
 a rusty axe
 a shiny sword
 some grenades
 a nail-studded club

 >X IT
 You see nothing special about the nail-studded club.

To many players, this re-assignment of the settings can seem arbitrary and unpredictable,
causing them to avoid the use of pronouns altogether. So, I recommend that you turn off the
pronoun checking performed by INV and LOOK. It's easy to do; just define a
MANUAL_PRONOUNS constant at the start of your game:

 Constant Story "MYGAME";
 Constant Headline "^My first Inform game.^";
 Constant MANUAL_PRONOUNS;

Pronouns are now assigned only when the player refers directly to an object. Of course, this
may mean that, as you move around, the object referenced by a pronoun is no longer in
scope, but at least you can understand what's going on.

How do I define a new object property?

There are two ways: using common properties (rarely found), and using individual properties
(very commonly found).

You can define a common property, one that is possessed by every
object in the game, by adding a line like this near the start of the game:

 Property weight 0;

There's an Inform limit of 62 common properties in total, and the Library already defines 50
of them. This isn't actually much of a restriction, because it's quite rare to need common
properties; most of the time, you can do the job better using individual properties.

You can define an individual property which applies only to one object, or to a class of
objects, simply by mentioning its name in the with segment when defining the object or
class; you don't need to use the Property directive. For example, you might say:

 Object old_man "grumpy old man"
 with name 'man' 'grumpy' 'cross' 'old' 'elderly' 'ancient' 'gnome',
 grumpiness 3,
 ...
 has animate;

in order to vary the old man's behaviour according to how grumpy he was at that moment.
Perhaps his description property then becomes:

More information in
the DM: §3.5 §3.13

http://www.inform-fiction.org/manual/html/s3.html#s3_5
http://www.inform-fiction.org/manual/html/s3.html#s3_13

 5 · Operating on Objects

 73

 description [;
 print "The grumpy old man ";
 switch(self.grumpiness) {
 0: "smiles bashfully.";
 1: "stares back without emotion.";
 2: "frowns in your direction.";
 3: "glowers at you ferociously.";
 4: "seems incandescent with rage.";
 default: "stands silently in the corner.";
 }],

In this example, the new grumpiness property contains a decimal value 0, 1, 2... etc. You
can, however, assign other types of data to your property, as we explain next. Furthermore,
you can assign more than one value to a property, thus turning it into an array. The syntax
is exactly the same, except that you supply several values rather than just one. The familiar
name property works just like this; here's another example, showing an alternative way of
handling the grumpiness descriptions (though it would be sensible to include a check that
grumpiness lay in the range 0..5):

 description [;
 print_ret "The grumpy old man ",
 (string) self.&grumpydesc-->(self.grumpiness);
],
 grumpydesc "smiles bashfully." "stares back without emotion."
 "frowns in your direction." "glowers at you ferociously."
 "seems incandescent with rage." "stands silently in the corner.",

How do I use my new object property?

You talk about it in the same way as the standard properties pre-defined
by the library: that is, you'd refer to the previous topic's grumpiness
property as self.grumpiness within the old_man object, or as
old_man.grumpiness from within any other object. It's simple, consistent, and very
powerful.

As for how you use your new property, that depends on what you store in it -- a true/false
flag, a number, an object's address, a string or a routine (or an array of any of those, but
we'll concentrate here on the basics). For example, you might create a flammable property,
controlling what happens to an object when you set fire to it, as any of these formats:

Property definition Reference to the
property

What's the outcome?

flammable, X = self.flammable; X contains zero.

flammable 20, X = self.flammable; X contains 20.

flammable obj_name, X = self.flammable; X contains the address of the obj_name.

X = self.flammable; X contains the address of the string.
flammable "string",

X = self.flammable(); the string is printed; X contains true.

X = self.flammable; X contains the address of the routine. flammable [;
 statement;
 statement;
 ...
], X = self.flammable();

the routine is executed; X contains its return
value.

More information
in the DM: §3.5

More information
in the DM: §3.9

http://www.firthworks.com/roger/informfaq/oo.html#14
http://www.inform-fiction.org/manual/html/s3.html#s3_5
http://www.inform-fiction.org/manual/html/s3.html#3_9

5 · Operating on Objects

 74

The really interesting -- and rather surprising -- information in that table relates to the
self.flammable() format. Read the table again: you'll see that the same format does
something useful both when the property value is a routine (which you'd expect), or a string
(which you certainly wouldn't expect). This is a great feature (and is discussed in more detail
later)!

It's often useful, especially when creating your own object classes, to construct properties
which can be either a string or a routine. The library has several of these: article, cant_go,
description, each_turn, initial, inside_description, plural, when_XXX and all of the
direction properties. They're handy because they cater both for the simple case -- when you
always want to display the same information -- and for more complex requirements where
what you print depends on the object state, or the time of day, or some other factor.

Suppose that you've got an object, such as a flashlight, which can be pointed at other
objects. Most objects don't react, but a few do... those that have a when_lit property, which
could be a routine or string. You can choose one of three techniques.

To help clarify what's happening, here's some actual code:

 Object -> "flashlight"
 with name 'flashlight',
 before [;
 PointAt:
 if (self has light && second provides when_lit)
 return second.when_lit();
],
 after [;
 SwitchOn: give self light;
 SwitchOff: give self ~light;
],
 has switchable ~on ~light;

 Object -> "owl"
 with name 'owl',
 when_lit "The owl blinks in mild surprise.",
 has animate;

 Object -> "mouse"
 with name 'mouse',
 when_lit [;
 remove self;
 "The startled mouse disappears into the undergrowth.";
],
 has animate;

 [PointAtSub; "Pointless.";];

Technique For example Commentary

Testing the
property type
yourself

if (otherObject.when_lit ofclass Routine)
 otherObject.when_lit();
else
 print (string) otherObject.when_lit;

Not recommended -- it's too
easy to make a mistake.

Using a library
routine

PrintOrRun(otherObject, when_lit);

PrintOrRun(otherObject, when_lit, true);

Simpler and more reliable.
In the first example a newline
is automatically added after a
printed string; in the second
example this is suppressed.

Letting the
system handle it
automatically

otherObject.when_lit();

otherObject.when_lit(p1,p2, ...);

Simplest of all.
A newline is always added
after a printed string.
In the second example, the
parameters are available to
the when_lit routine.

http://www.firthworks.com/roger/informfaq/ii.html#9
http://www.firthworks.com/roger/informfaq/oo.html#5

 5 · Operating on Objects

 75

 Verb 'aim' 'point'
 * held 'at'/'on'/'towards' noun -> PointAt;

 Extend only 'shine'
 * held 'at'/'on'/'towards' noun -> PointAt;

So, if you're coding a property whose value can be a routine or a string -- and, given it's so
easy, why not? -- my advice is to invoke it with the obj.prop() syntax at all times unless
you especially don't want that automatic newline afterwards, when you should instead use
PrintOrRun(obj, prop, true).

Do I need to understand private properties?

No. They offer no meaningful advantage over regular properties, and you
can forget all about them.

How do I define a new object attribute?

Unlike properties, you can't define an attribute which applies only to one object, or to a class
of objects. Inform's attributes are globally-defined, and are always associated with all objects
in the game. You would create a new attribute by saying, near the start of the game,
something like:

 Attribute large;

and then including:

 has large;

in the definition of objects which were, for example, too bulky to be pushed through a crack,
or hidden in a rabbit hole, or whatever your game demanded.

There's an Inform limit of 48 attributes in total, and the Library already defines 31 of them.
This, too, isn't actually much of a restriction, because it's quite rare to need new attributes;
most of the time, you can do the job better using individual properties, as we explain next.

How can I use individual properties as attributes?

Attributes are variables which may have only two states: they're either
present, or they're absent. These variables -- usually called 'flags' in
programming jargon (the flag is either 'up' or 'down', meaning: set or
clear, on or off, true or false, yes or no...) -- become really useful when you want to work
with binary states: is the chest open, or closed? Has the banana been peeled, or not? etc.

The use of attributes is very easy and straightforward. As we have seen in the previous
topic, you can create a new attribute with the directive:

 Attribute peeled;

And then you can check whether an object has the attribute set (or not set) with:

 if (banana has peeled) ...
 if (banana hasnt peeled) ...

You can set the attribute with:

 give banana peeled;

and clear it with:

More information
in the DM: §3.6

More information
in the DM: §3.7

More information
in the DM: §3.7

http://www.inform-fiction.org/manual/html/s3.html#s3_6
http://www.inform-fiction.org/manual/html/s3.html#s3_7
http://www.inform-fiction.org/manual/html/s3.html#s3_7

5 · Operating on Objects

 76

 give banana ~peeled;

Inform, however, has a limited stock of attributes; you can create only about 17 additional
customised flags. Moreover, once you define an attribute, you do it for all the objects in the
game; by default, the new attribute is not set for any of the objects, but nevertheless it feels
a bit awkward to have the possibility of, for example, a peeled television set.

Individual properties are variables which may hold much more than just two states, so they
can function as flags with room to spare. An individual property is defined within one object
and it affects only that object: if you have a banana and an orange, you'll have to define a
peeled property for each (or maybe create a Fruit class -- see below -- from which they both
inherit such a property). The syntax is a little bit more complex, but hardly a nuisance. To
define a new individual property to act as flag, simply write:

 Object banana "banana" fruitbowl
 with name 'banana',
 peeled false,
 ...

Now you can test if the banana has been peeled (or not) with:

 if (banana.peeled == true) ...
 if (banana.peeled == false) ...

and change the state of the banana with:

 banana.peeled = true;
 banana.peeled = false;

Note the use of '==' to test the value of the property, and '=' to assign the value of the
property.

If these tests or changes are made from within the banana object, we recommend the use of
self instead of banana:

 self.peeled = true;
 if (self.peeled == false) ...

So what's so hot about this slightly more verbose method for flags? Three main reasons.

• There is virtually no limit to the number of individual properties that you can define
(the DM claims a limit of 16,320).

• It's a cleaner programming style to define suitable variables only where they are
needed.

• Being a 16-bit variable, a local property can represent more than just two states.

To illustrate this last point (admittedly, we're not talking about simple flags any more),
suppose that you want to create a set of 'flaming torch' objects which can be unlit, alight or
burnt-out (and therefore useless). One way is to define two new attributes:

 Attribute usable;
 Attribute burning;

and you could then test an object's state by:

 if (myObject has usable && myObject hasnt burning) ... ! It's unlit
 if (myObject has usable && myObject has burning) ... ! It's lit
 if (myObject hasnt usable) ... ! It's burnt-out

But that's a clumsy approach; a better way is to use a single torch_state property:

More information in
the DM: §3.5 §3.13

http://www.firthworks.com/roger/informfaq/oo.html#5
http://www.inform-fiction.org/manual/html/s3.html#s3_5
http://www.inform-fiction.org/manual/html/s3.html#s3_13

 5 · Operating on Objects

 77

 if (myObject provides torch_state && myObject.torch_state == 0) ! Unlit
 if (myObject provides torch_state && myObject.torch_state == 1) ! Lit
 if (myObject provides torch_state && myObject.torch_state == 2) ! Burnt-out

Note that we're testing whether myObject provides torch_state; this is unnecessary if we
know that myObject is a torch and therefore will definitely have a torch_state property, but
essential if myObject might be an ordinary object which didn't have such a property as part
of its definition. Note also that the 'attribute' method doesn't enable you to deduce reliably
whether any given object is in fact a torch or not, whereas with the 'local property' method
it's easy:

 if (myObject provides torch_state) ... ! It's a torch of some sort

An even better way, incidentally, would be to define a Class of torch objects (more about
Classes in the next topic):

 Class Torch
 with torch_state;

 Torch myObject
 ...

 if (myObject ofclass Torch) ... ! It's a torch of some sort
 if (myObject ofclass Torch && myObject.torch_state == 1) ... ! It's lit

In general, we advise you to define new attributes only where they will apply to a
considerable number of objects in your game. When the same state settings apply to only
one or two objects, the use of local properties is just as easy, and a lot more powerful.

If your game needs a lot of flags to control the state of play and you really can't afford the
memory consumed by making each one a Global variable or an individual property, you
might be interested in the newflags.h library contribution, Fredrik Ramsberg's revision of
Adam Cadre's flags.h. (But if you do, be sure to define some meaningful constant names,
for example:

 Constant FED_RACCOON = 0; ! Has Beauford eaten the corn and fed
 ! the raccoon in the proper order?
 Constant BOOKED_PLANE = 1; ! Has Hildegard booked her plane tickets
 ! with the correct credit card?
 ...
 Constant WEASEL_IN_PANTS = 53; ! Is the weasel hiding in the pantaloons?

rather than using raw numbers in your code.)

What does class inheritance do for me?

Defining your own classes, so that you can create objects which are
instances of those classes, is an easy and yet powerful technique.
Whenever you find yourself defining two or more objects which have some
common characteristics, ask yourself whether they could possibly belong to the same class.
The most obvious example is a class used for rooms. Almost every time that you add a new
location to your game, you’ll want it to have light. So you can readily create a basic
template:

 Class Room
 with description "A bare and featureless room.",
 has light;

and then take that as the starting point for your new room objects:

 Room hallway "Dingy hall"
 with description "Steps lead down into darkness.",
 d_to cellar;

More information
in the DM: §3.8

For more information on
objects, classes and the
use of properties and
attributes, see Roger
Firth's InFancy pages

http://www.inform-fiction.org/extensions/programming.html
http://www.inform-fiction.org/manual/html/s3.html#s3_8
http://www.firthworks.com/roger/infancy/index.html

5 · Operating on Objects

 78

 Room cellar "Cellar"
 with description
 "Once the home of vintage wine; now only spiders remain."
 u_to hallway,
 has ~light;

Using classes like this makes a game easier to write and easier to read, so it's worth
mastering the technique early on.

There's no reason why an object can't be a member of two classes. For example, here's a
class whose only purpose is to be tested against by the "snow" object:

 Class Snowy;

 Object "snow"
 with name 'snow' 'drift' 'drifts',
 article "some",
 description "Pure white billowy drifts.",
 found_in [; return(location ofclass Snowy);],
 before [; Take: "It's too fine and powdery.";];

Given those definitions, you can conjure up the start of an icy landscape:

 Room northpole "The North Pole"
 class Snowy
 with description "Windy, and white, and very very cold.",
 ...

When is a Dynamic class useful?

A class definition is a good way of handling similar objects, and an
excellent way of dealing with identical objects. For example, this is all
that's needed to put some eggs into a nest:

 Object -> "nest"
 with name 'nest'
 has container open;

 Class Egg
 with short_name "egg",
 plural "eggs",
 name 'egg' 'eggs//p',
 description "Speckled blue and green.";

 Egg -> ->;
 Egg -> ->;
 Egg -> ->;

The game reports this as "You can see a nest (in which are three eggs) here". The "three
eggs" are grouped because they're 'indistinguishable' -- they provide a plural property, and
their name properties are the same.

Usually, this technique is all you need -- there are three eggs at the start and hopefully still
three at the end -- but just occasionally you'll come across a situation where similar objects
appear and disappear during the course of a game. If you find yourself needing to create
identical objects as the game progresses, you might consider using a Dynamic class. We'll
illustrate this by blowing bubbles (you'll have to imagine the wire loop and the soap
solution). Here's a basic class:

 Class Bubble(10)
 with short_name "bubble",
 plural "bubbles",
 name 'bubble' 'bubbles//p',
 description "The bubble floats gently in the air.";

More information
in the DM: §29

http://www.inform-fiction.org/manual/html/s29.html#s29

 5 · Operating on Objects

 79

That's hardly any different from the definition of the Egg class, is it? Just the (10) after the
class name, which you should read as specifying that "no more than ten bubbles can exist at
any one time". What has changed is the way that the bubbles are brought into existence.
We'll conjure them up by enabling the player to type BLOW BUBBLE, using this extension of
the library's standard BLOW verb:

 [BlowBubbleSub obj;
 obj = Bubble.create();
 if (obj == nothing)
 "Sorry, you've run out of bubbles.";
 move obj to location;
 "You carefully blow a bubble.";
];

 Extend 'blow' first
 * 'bubble'/'bubbles' -> BlowBubble;

The statement obj = Bubble.create(); does the trick. Sending a create message to a
Dynamic class definition brings a new object of that class into existence, and returns the
number used to identify the object. The object is created in limbo -- without a parent -- so
you'll usually need to move it into play; move obj to location; does that, and finally, you
tell the player what's happened. If instead Bubble.create() returns nothing then the object
couldn't be created (because you've already blown all of the specified 10), apologise to the
player, and give up.

So far so good, but we can make a few improvements to our code. First, we simplify
BlowBubbleSub() by making the newly-created object responsible for its own initialisation.
We do this by adding a create property to the class:

 Class Bubble(10)
 with short_name "bubble",
 plural "bubbles",
 name 'bubble' 'bubbles//p',
 description "The bubble floats gently in the air.",
 create [;
 move self to location;
 "You carefully blow a bubble.";
];

 [BlowBubbleSub;
 if (Bubble.create() == nothing)
 "You've run out of bubbles.";
];

The use of Bubble.create() tells the Bubble class to create a new Bubble object; the library
contains all the code to do that. Then, the library calls the create property of the new object
-- if it provides one -- to enable the object to set itself up: here, by moving itself to the
current location and announcing its own birth.
The bubbles that we're creating here aren't very realistic, since they can be taken and
dropped like solid objects. Let's make them burst if touched...

 Class Bubble(10)
 with short_name "bubble",
 plural "bubbles",
 name 'bubble' 'bubbles//p',
 description "The bubble floats gently in the air.",
 create [;
 move self to location;
 "You carefully blow a bubble.";
],
 before [;
 Attack, Cut, Push, PushDir, Rub, Squeeze, Take,
 Taste, Tie, Touch, Turn, Wave:
 Bubble.destroy(self);
 "With a gentle 'pop', the bubble bursts.";
];

More information
in the DM: §3.11

http://www.inform-fiction.org/manual/html/s3.html#s3_11

5 · Operating on Objects

 80

...or if deliberatly popped...

 [BurstSub;
 "You can't burst that!";
];

 Verb 'burst' 'deflate' 'pop' 'prick' 'puncture'
 * multi -> Burst;

...or of their own accord after a few turns:

 Class Bubble(10)
 with short_name "bubble",
 plural "bubbles",
 name 'bubble' 'bubbles//p',
 description "The bubble floats gently in the air.",
 create [;
 StartTimer(self, random(5));
 move self to location;
 "You carefully blow a bubble.";
],
 before [player_gone;
 Attack, Burst, Cut, Push, PushDir, Rub, Squeeze,
 Take, Taste, Tie, Touch, Turn, Wave:
 StopTimer(self);
 player_gone = (self notin location);
 Bubble.destroy(self);
 if (player_gone) rtrue;
 "With a gentle 'pop', the bubble bursts.";
],
 time_left 0,
 time_out [; <<Burst self>>;];

 [BlowBubbleSub;
 if (Bubble.create() == nothing)
 "You pause for a moment to get your breath back.";
];

Note how we handle the destruction of a burst bubble. Rather than just moving it out of sight
by remove self, we use Bubble.destroy(self) which has the effect making the destroyed
object re-usable by a subsequent call to Bubble.create(). We suppress the message about
the bubble bursting if the player is no longer in the room. Once we've got ten bubbles in the
air at the same time and so can't blow any more, we have only to wait until one of them
bursts... and we can blow another one. We therefore change the message from
BlowBubbleSub() to suggest that the ban on creation is a temporary limitation.
One final flourish: we'll stop the bubbles being indistinguishable by giving them some size
and colour characteristics, chosen at random.

 Class Bubble(10)
 with short_name [;
 print (address) self.&name-->0, " ",
 (address) self.&name-->1, " bubble";
 rtrue;
],
 name '.size' '.colour' 'bubble' 'bubbles//p',
 description [; print_ret (The) self, " floats gently in the air.";],
 create [;
 self.&name-->0 = random('tiny', 'small', 'regular', 'large',
 'enormous');
 self.&name-->1 = random('red','green','blue');
 PronounNotice(self);
 move self to location;
 StartTimer(self, random(5));
 "You carefully blow ", (a) self, ".";
],

 5 · Operating on Objects

 81

 before [player_gone s c;
 Attack, Burst, Cut, Push, PushDir, Rub, Squeeze,
 Take, Taste, Tie, Touch, Turn, Wave:
 StopTimer(self);
 player_gone = (self notin location);
 s = self.&name-->0; c = self.&name-->1;
 Bubble.destroy(self);
 self.&name-->0 = s; self.&name-->1 = c;
 if (player_gone) rtrue;
 "With a gentle 'pop', ", (the) self, " bursts.";
],
 time_left 0,
 time_out [; <<Burst self>>;];

Several changes here. We've reserved two entries at the start of the name property to hold
a pair of adjectives representing the bubble's size and colour; we write appropriate random
values into these entries at the start of the create property. The short_name property uses
the two adjectives to compose the object's name (for example, "tiny red bubble"). The
various messages use print rules like "(The) self" in order to display that composite name.
We've added PronounNotice(self) so that BLOW BUBBLE THEN BURST IT works as you'd
imagine it should. And, somewhat obscurely, we remember the bubble's size and colour just
before we destroy it, and reinstate them afterwards. Huh?

A bit of inside information may be helpful here. The declaration Class Bubble(10) ... ;
actually compiles 11 identical bubble objects, and makes them all children of the Bubble
class (which is also an object). The Bubble.create() call doesn't do much more than make
one of the first ten of those child objects available to the game, and the Bubble.destroy()
call just returns the 'destroyed' object to the pool of children. The eleventh object is never
made available; it's there to provide a template so that, when an object is destroyed, its
property values can be reset to their default state. Which means that the randomised size
and colour values are lost, and you may see "You can't see 'it' (the .size .colour bubble) at
the moment". That's why we reinstate the size and colour values after destroying a bubble.
All of which means that our bubbles now behave something like this:

 >BLOW BUBBLE
 You carefully blow a small blue bubble.

 >BLOW BUBBLE
 You carefully blow a large red bubble.

 >EXAMINE IT
 The large red bubble floats gently in the air.

 >BURST IT
 With a gentle 'pop', the large red bubble bursts.

 >EXAMINE IT
 You can't see "it" (the large red bubble) at the moment.

 >LOOK
 ...
 You can see a small blue bubble here.

There's one other thing you should know. You might imagine that a statement like
objectloop (o ofclass Bubble) ... would loop through your 'created' bubbles. Wrong: it
loops through all 11 of the compiled bubbles. The statement you want is probably
objectloop (o ofclass Bubble && o notin Bubble) ...

5 · Operating on Objects

 82

How can I reconfigure the Player Character (PC)?

In Parserm.h, the Library defines a standard object selfobj which represents the human
person who is playing your game, and a variable player which normally contains the address
of selfobj.

The INVENTORY command lists the objects which are the children of player, while
EXAMINE ME invokes its description property. By default, that outputs "As good-looking as
ever.", but you may well wish to change it; here are a couple of methods. The standard
selfobj looks rather like this:

 Object selfobj "(self object)"
 with short_name [; return L__M(##Miscellany, 18);],
 description [; return L__M(##Miscellany, 19);],
 ...
 has animate concealed proper transparent;

So, one way to change the descriptive text is to define a LibraryMessages object to
intercept Miscellany message 19:

 Include "Parser";

 Object LibraryMessages
 with before [;
 Miscellany:
 if (lm_n == 19) "Not much change since you last looked.";
];

 Include "VerbLib";

However, it's easier just to change the description property itself. For example, you could
add this line to your Initialise() routine:

 [Initialise;
 player.description = "Not much change since you last looked.";
 ...
];

or this one, referencing the address of a suitable property routine:

 [PlayerDesc;
 if (children(self) == 0) "Forlorn and empty-handed.";
 "Your possessions don't inspire much confidence.";
];

 [Initialise;
 player.description = PlayerDesc;
 ...
];

Or, yet another possibility, you could supply your own player object, a modified version of
the one in Parserm.h:

 Object mySelfobj "(self object)"
 with short_name [; return L__M(##Miscellany, 18);],
 description [;
 if (children(self) == 0) "Forlorn and empty-handed.";
 "Your possessions don't inspire much confidence.";
],
 ...
 has animate concealed proper transparent;

 [Initialise;
 player = mySelfobj;
 ...
];

More information
in the DM: §21

More information
in the DM: §25

More information
in the DM: §A3

http://www.inform-fiction.org/manual/html/s21.html
http://www.inform-fiction.org/manual/html/s25.html
http://www.inform-fiction.org/manual/html/sa3.html

 5 · Operating on Objects

 83

In the Initialise() routine, it's safe to assign object addresses directly to the location and
player variables. Everywhere else, you should use the Library routines PlayerTo() and
ChangePlayer() respectively.

Why does my game crash when I use move in an objectloop?

Usually, it doesn't nowadays, because many errors are caught by Strict
checking. However, you need to be aware of the special-case handling of
objectloop. If you use one of the three special forms (especially #1; the
others are rarely seen), then your loop runs a lot faster, because the number of objects
being tested is much smaller.

However, this optimisation is achieved by using the sibling() function to navigate the linked
object tree, rather than simply iterating through all of the defined objects. And if you move
or remove an object in the middle of an optimised loop, you'll screw up the linkage, and the
results will be... interesting.

objectloop formats:

Standard

Code: Generated code is equivalent to:

objectloop (condition) {
 statement;
 statement;
 ...
}

for (all objects in game) if (condition) {
 statement;
 statement;
 ...
 }

The direct children (but not grandchildren) of object.

Code: Generated code is equivalent to:

objectloop (i in object) {
 statement;
 statement;
 ...
 }

for (i = child(object) : i : i = sibling(i)) {
 statement;
 statement;
 ...
 }

The children of object's parent (including object itself).

Code: Generated code is equivalent to:

objectloop (i near object) {
 statement;
 statement;
 ...
 }

for (i = child(parent(object)) : i : i =
sibling(i)) {
 statement;
 statement;
 ...
 }

object and its younger siblings.

Code: Generated code is equivalent to:

objectloop (i from object) {
 statement;
 statement;
 ...
 }
for (i = object : i : i =
sibling(i)) {
 statement;
 statement;

 ...
 }

More information
in the DM: §3.4

Special case #1

Special case #2 (rare)

Special case #3 (rare)

http://www.inform-fiction.org/manual/html/s3.html#s3_4

5 · Operating on Objects

 84

Using move and remove in 'standard' objectloops is fine. Also, the (i in object) form is
'special' only in that exact form -- if you add another condition like
(i in object && i has attribute) or (i && i in object), it becomes safely 'standard'. Note: you
can't add extra conditions to the other two special forms, which is probably why they're not
often encountered.

Can I loop through all of an object's dependents?

You'll see from the previous topic that objectloop (i in object) selects the direct children of
object, but not any other dependent objects -- grandchildren, great-grandchildren and so on
-- lower down the hierarchy. Since that's quite a useful thing to be able to do, we'll discuss
some ways that you can go about it. First of all, for reasons that will hopefully become clear
in a minute, we'll encapsulate the actual processing in a separate routine: this simple
example merely displays the name of each object as we loop through it:

 [ProcessObject obj;
 print (name) obj, "^";
];

With that in place, here are three alternative definitions of a routine which applies
ProcessObject() to all of the dependents of a specified parent object par:

 [R1 par o;
 objectloop (o ~= par && IndirectlyContains(par, o))
 ProcessObject(o);
];

 [R2 par o;
 for (o=child(par) : o :) {
 ProcessObject(o);
 if (child(o)) o = child(o);
 else
 while (o) {
 if (sibling(o)) { o = sibling(o); break; }
 o = parent(o);
 if (o == par) return;
 }
 }
];

 [R3 par o;
 objectloop (o in par) {
 ProcessObject(o);
 if (child(o)) R3(o);
 }
];

The R1() example is the easiest to write and understand: unfortunately it's also hopelessly
inefficient because of the amount of unnecessary testing that it performs. The much better
R2() example calls the low-level child(), sibling() and parent() functions to move directly
between the various dependents of par. And R3() is a nice compromise: it uses recursion --
that is, it calls itself -- to navigate through par's dependents, which makes it appear simpler
than it actually is.

So far, so good: you could use our little ProcessObject() routine with any of R1(player),
R2(player) or R3(player) to print a list of the player's possessions. Or in fact, not so good,
because ProcessObject() is being called for all of par's dependents, even if they're not visible
to the outside world. For example, if the player is carrying a locked box, then you quite
possibly want to bypass any objects in that box, rather than call ProcessObject() for each of
them. This is quite tricky to do using the R1() technique, but is very straightforward for R2()
and R(3). First of all, we extend ProcessObject() so that it returns true if its contents, if any,
are also to be processed, or false if any contents are to be skipped. Here's one test that you
might find useful:

 5 · Operating on Objects

 85

 [ProcessObject obj;
 print (name) obj, "^";
 if ((obj has supporter or transparent) ||
 (obj has container && obj has open)) rtrue;
 rfalse;
];

And these are revised versions of R2() and R3() which test the value returned by
ProcessObject() and act accordingly:

 [R2 par o;
 for (o=child(par) : o :) {
 if (ProcessObject(o) && child(o)) o = child(o);
 else
 while (o) {
 if (sibling(o)) { o = sibling(o); break; }
 o = parent(o);
 if (o == par) return;
 }
 }
];

 [R3 par o;
 objectloop (o in par)
 if (ProcessObject(o) && child(o)) R3(o);
];

 6 · Verbal Versatility

 87

6 · Verbal Versatility

How do I define a new verb?

Whereas new nouns and adjectives are defined throughout the game file -- more or less
whenever you create an object -- the process of adding new verbs needs more careful
consideration. It's a complex subject, so we'll just scratch the surface. Basically, you need to
define the verb's grammar -- what word(s) the player is permitted to type -- and an action
routine which is invoked when he actually does type them. The simplest case is an
intransitive verb; one that doesn't take an object. For example, to enable the player to
SMILE and FROWN, you might add these lines at the end of your game, after the
Include "Grammar":

 [SmileSub; "Your face lights up in a cheery smile.";];
 [FrownSub; "A brief hint of annoyance crosses your face.";];

 Verb 'smile' 'grin' 'smirk' 'beam' 'twinkle'
 * -> Smile;
 Verb 'frown' 'scowl' 'glower' 'glare' 'lour'
 * -> Frown;

Here, 'smile' and the other words in apostrophes are the verbs being added to the dictionary;
since you can't be sure exactly which word the player might think of, you can collect several
verbs which are roughly similar in effect, and make them all behave the same. The blank
space within "* ->" means that you'll recognise SMILE only on its own, not when it's
followed by another word. The "Smile" after the "->" is the name of the action to be
performed when you recognise SMILE. And finally, Inform automatically derives the name of
the routine called to deal with an action by appending "Sub" to the name of the action. So,
SmileSub is the routine which is called to deal with the Smile action.

The player can now express some basic facial emotion to the world in general. But what if he
wants to SMILE AT something or someone? Here's a revised grammar:

 Verb 'smile' 'grin' 'smirk' 'beam' 'twinkle'
 * -> Smile
 * 'at' noun -> Smile;

And here's an enhanced action routine, generating responses which are better-tailored to the
subject:

 [SmileSub;
 if (noun == nothing) "Your face lights up in a cheery smile.";
 if (noun == player) "Easily amused, heh?";
 if (noun has animate) print_ret (The) noun, " looks at you quizzically.";
 "There is no reaction.";
];

When writing an action routine -- FrownSub, SmileSub, etc -- you should generally provide
just a standard default response which can safely be used in the majority of circumstances;
that is, don't try to handle special cases -- ones that actually affect the game world -- in the
action routine. Then you'll use before (and occasionally after) properties to define the
behaviour of the handful of objects, often only one, which need to respond in a specific way.

When should I use before/react_before properties?

You use a before property to intercept an action which is aimed specifically at that object;
you use a react_before property to intercept an action which is aimed at another, nearby,
object. For example, if you introduce the grumpy old man into the room, you can SMILE AT
MAN to elicit a quizzical glance in return. Or, with a suitable before property, he can be
taught to respond differently:

More information in
the DM: §30 §31

http://www.inform-fiction.org/manual/html/s30.html
http://www.inform-fiction.org/manual/html/s31.html

6 · Verbal Versatility

 88

 Object old_man "grumpy old man" study
 with name 'man' 'grumpy' 'cross' 'old' 'elderly' 'ancient' 'gnome',
 description "The grumpy old man stands silently in the corner.",
 before [; Smile: "The grumpy old man nods slightly.";],
 has animate;

To make him respond when you SMILE AT DESK, or at something
else in the room, just provide a react_before property:

 Object old_man "grumpy old man" study
 with name 'man' 'grumpy' 'cross' 'old' 'elderly' 'ancient' 'gnome',
 description "The grumpy old man stands silently in the corner.",
 before [; Smile: "The grumpy old man nods slightly.";],
 react_before [; Smile: "The grumpy old man looks puzzled.";],
 has animate;

Actually, that's not quite right. The old man is now looking puzzled too often; his
react_before is intercepting every SMILE in the vicinity, even ones aimed at him. You'd be
better using:

 react_before [; Smile: if (noun == writing_desk)
 "The grumpy old man looks puzzled.";],

or perhaps:

 react_before [; Smile: if (noun ~= self or player or nothing)
 "The grumpy old man looks puzzled.";],

Understanding the power of the before (and to a lesser extent, react_before) properties is
the key to making specific objects respond to specific actions. There are also after and
react_after properties, but you don't use them quite so often, because they apply only to
Group 2 actions -- those like Take and Open and Insert which change the game's state.
Actions like Push or Show, or Smile, are in Group 3; they don't change the state unless by
supplying a suitable before property you cause them to do so. For example, you'd be
wasting your time adding after/react_after properties for Smile to the old man -- they'd
simply never be invoked by this example code.

A slightly simplified list of the order in which a command like DOTHIS
TOTHAT is processed is:

"Before" stage 1. any react_before properties of objects in scope, including player and TOTHAT
2. any before property of the room
3. any before property of TOTHAT
4. any life property of TOTHAT (but only if it's animate) -- see the next topic

"During" stage 5. the DOTHISSub action routine (which is generally buried deep in the Library)

"After" stage
(only for Group
2 actions)

6. any react_after properties of objects in scope, including player and TOTHAT
7. any after property of the room
8. any after property of TOTHAT

If at any stage the routine doing that step's processing returns true, the whole sequence
ends immediately. So, for example, when the old man's react_before printed "The grumpy
old man looks puzzled." and returned true at step 1, none of the other steps took place.

Where do life and orders fit in?

Well, unless an object has an animate attribute, the life and orders properties don't have
any effect at all (except that if an object has a talkable attribute, you can give it a life
property). If your object is animate, there are four cases to consider; note that these
processing sequences focus on the objects being addressed, and ignore any reactions of
other objects:

More information in the
DM: §4 §6 §8 §17

More information
in the DM: §6

http://www.inform-fiction.org/manual/html/s4.html
http://www.inform-fiction.org/manual/html/s6.html
http://www.inform-fiction.org/manual/html/s8.html
http://www.inform-fiction.org/manual/html/s17.html
http://www.inform-fiction.org/manual/html/s6.html

 6 · Verbal Versatility

 89

Case Example Processing sequence

Primary object ATTACK
OLD MAN

1. any before property of old_man (test for ##Attack action)
2. any life property of old_man (test for ##Attack action)
3. the AttackSub action routine

Secondary object
(with THROW)

THROW AXE
AT MAN

1. any before property of axe (test for ##ThrowAt action)
2. any before property of old_man (test for ##ThrownAt fake action)
3. any life property of old_man (test for ##ThrowAt action) [1]
4. the ThrowAtSub action routine

Secondary object
(with GIVE/
SHOW)

GIVE AXE
TO MAN

1. any before property of axe (test for ##Give action)
2. any life property of old_man (test for ##Give action) [2]
3. the GiveSub action routine

Direct order MAN, TAKE
THE AXE

1. any orders property of old_man (test for ##Take action)
2. any life property of old_man (test for ##Order fake action, then
##Take action) [3]
3. parser displays "The grumpy old man has better things to do"

Note 1. Whereas the man's before property is passed the expected ##ThrownAt fake action
(because the old man is the target of the axe throwing), his life property -- rather surprisingly -- is
passed ##ThrowAt.

Note 2. If you were expecting the man's before property to be called with the ##Receive fake
action before this step, you'd be wrong.

Note 3. This clumsy method is a hangover from the way orders were originally handled, and is best
avoided. If your NPCs are intended to respond to direct commands, give them an orders property.

The bottom line is: orders is pretty well essential if your NPCs can expect to be requested to
perform actions. On the other hand, life isn't so useful; just about its only real advantages
over the more general before are that it provides a common point at which to reject the
nine animate-only actions (Attack, Kiss, WakeOther, ThrowAt, Give, Show, Ask, Tell and
Answer), and that it seems to be the only place where you can customize responses to GIVE
and SHOW.

Surely the syntax of these properties is a little odd?

Yes. When you write something like:

 before [;
 Smile: "The grumpy old man nods slightly.";
 Touch: "Be gentle!";
 Smell: "Tobacco and old boots.";
],

it's as though you'd written a switch statement, omitting the highlighted material:

 before [;
 switch(sw__var) {
 ##Smile: "The grumpy old man nods slightly.";
 ##Touch: "Be gentle!";
 ##Smell: "Tobacco and old boots.";
 }
],

(The implicit switch statement is testing the library variable sw__var, which usually
contains the current action value, except in life properties where it contains reason_code.)
Because before (and in fact all properties) pseudo-conforms to the switch syntax, you can
add code in two places for special effect:

6 · Verbal Versatility

 90

 before [;
 ! statements here are executed for all actions.
 Smile: "The grumpy old man nods slightly.";
 Touch: "Be gentle!";
 Smell: "Tobacco and old boots.";
 default: ! statements here are executed for non-listed actions.
],

How do I change an existing verb?

As you've seen from the earlier topic, the process for creating a brand new verb -- one which
the Library doesn't already define -- is reasonably straightforward. Here's another example,
perhaps slightly more complex, of verbs which interact with objects and make changes in the
model world. Our aim is to create a grammar enabling the player to type FOLD PAPER
ROUND BOOK or WRAP BOOK IN PAPER:

 [CoverWithSub; "That's hardly a suitable covering!";];

 Verb 'wrap' 'fold' 'enfold'
 * noun 'round'/'around'/'over' held -> CoverWith
 * held 'in'/'inside'/'with' noun -> CoverWith reverse;

This time, two objects are involved: the wrapper, and something in the player's possession
which is being wrapped. Let's try and write this fairly generally (so that any held object can
be parcelled up) by aiming the CoverWith action at the wrapper object, which then needs a
before property to do the real work:

 ! The 'paper' object is in the same room as the object to be wrapped.

 Object -> paper "sheet of wrapping paper"
 with name 'sheet' 'of' 'wrapping' 'paper',
 before [; CoverWith:
 move parcel to parent(self);
 move second to parcel; move self to parcel;
 "You wrap ", (the) self, " around ", (the) second, ".";
];

 ! Initially, the 'parcel' object has no parent

 Object parcel "folded paper parcel"
 with name 'folded' 'paper' 'parcel' 'package',
 before [; Open:
 while (child(self)) move child(self) to parent(self);
 remove self;
 "You unwrap ", (the) self, ".";
];

So far, so good: our new WRAP verb brings the parcel object into the room, with the paper
and the original unwrapped object as children, and the existing OPEN/UNWRAP verbs turn
that parcel back into its wrapper and content objects. It all works... providing the player
thinks to WRAP (or FOLD or ENFOLD) the paper round the book, or WRAP the book in paper.
But of course he doesn't think of that, at least initially. Not being able to Read The Author's
Mind, the first thing our player tries is PUT PAPER AROUND BOOK, followed by COVER BOOK
WITH PAPER. Since a fundamental principle of good game design is to respond intelligently
to just about any reasonable player command, we need to accomodate those forms as well;
that's where things get... interesting. We can't just include 'put' 'cover' in the new grammar
after 'wrap' 'fold' 'enfold', because both 'put' and 'cover' are already defined in the Library
file Grammar.h (as soon as you start thinking about extensions to Inform's standard list of
verbs, you'll need to study the contents of that file):

 Verb 'close' 'shut' 'cover'
 * noun -> Close
 * 'up' noun -> Close
 * 'off' noun -> SwitchOff;

More information in
the DM: §30 §31

http://www.inform-fiction.org/manual/html/s30.html
http://www.inform-fiction.org/manual/html/s31.html
http://www.firthworks.com/roger/informfaq/vv.html#1

 6 · Verbal Versatility

 91

 Verb 'put'
 * multiexcept 'in'/'inside'/'into' noun -> Insert
 * multiexcept 'on'/'onto' noun -> PutOn
 * 'on' held -> Wear
 * 'down' multiheld -> Drop
 * multiheld 'down' -> Drop;

So, we need to modify the existing grammar to suit our needs, and Inform provides the
Extend directive for this purpose. If we simply want to add a line of grammar, we can code:

 Extend 'put' last
 * noun 'round'/'around'/'over' held -> CoverWith;

The keyword last places the additional grammar after the existing definitions. In fact, that's
the default: you can omit last if you want the new grammar at the end, or you can use
instead first to insert it at the start, or replace to override the existing grammar
completely. It's worth noting here that the debugging tool SHOWVERB is very useful once
you find yourself playing with the verb grammars:

 >SHOWVERB PUT
 Verb 'put'
 * multiexcept 'in' / 'inside' / 'into' noun -> Insert
 * multiexcept 'on' / 'onto' noun -> PutOn
 * 'on' held -> Wear
 * 'down' multiheld -> Drop
 * multiheld 'down' -> Drop
 * noun 'round' / 'around' / 'over' held -> CoverWith

That's extended the existing PUT verb satisfactorily, but COVER needs a little more care. If
we code it like this:

 Extend 'cover'
 * held 'in'/'with' noun -> CoverWith reverse;

then we're actually extending CLOSE and SHUT as well, as we can see:

 >SHOWVERB COVER
 Verb 'close' 'cover' 'shut'
 * noun -> Close
 * 'up' noun -> Close
 * 'off' noun -> SwitchOff
 * held 'in' / 'with' noun -> CoverWith reverse

Now the player can type CLOSE BOOK WITH PAPER, a most unsatisfactory side effect. So
this is where another Extend keyword -- only -- comes into play. To Extend the existing
grammar only for the verb 'cover' -- but not for 'close' or 'shut' -- we code thus:

 Extend only 'cover'
 * held 'in'/'with' noun -> CoverWith reverse;

And this adjusts the grammar in the desired manner:

 >SHOWVERB COVER
 Verb 'cover'
 * noun -> Close
 * 'up' noun -> Close
 * 'off' noun -> SwitchOff
 * held 'in' / 'with' noun -> CoverWith reverse

 >SHOWVERB CLOSE
 Verb 'close' 'shut'
 * noun -> Close
 * 'up' noun -> Close
 * 'off' noun -> SwitchOff

Finally, just for completeness, we'll define 'unfold' as a synonym for 'open', so that we can
UNFOLD PARCEL as well. This is very easy to do:

6 · Verbal Versatility

 92

 Verb 'unfold' = 'open';

Now let's see another example to explore the versatility of the Extend directive. The Library
defines this simple drinking grammar, in which 'drink', 'swallow' and 'sip' all behave
identically:

 Verb 'drink' 'swallow' 'sip'
 * noun -> Drink;

Imagine that you want to distinguish between sipping (a small quantity), drinking (a normal
quantity) and swallowing (the whole lot), at the same time adding a few synonyms. Three
new action routines must take the place of the standard DrinkSub():

 [SipSub; L__M(##Drink, 1, noun);];
 [SwigSub; L__M(##Drink, 1, noun);];
 [SwallowSub; L__M(##Drink, 1, noun);];

These new routines are defined so that they all provide by default the standard library
message that was intended for the verb 'drink'. We now code synonyms for 'drink':

 Verb 'imbibe' 'swig' 'gulp' 'quaff' = 'drink';

And lastly, we Extend the grammar so that the verbs are correctly redirected to the new
action routines:

 Extend only 'sip' replace
 * noun -> Sip;

 Extend only 'drink' 'imbibe' 'swig' replace
 * noun -> Swig
 * 'all' noun -> Swallow;

 Extend only 'swallow' 'gulp' 'quaff' replace
 * noun -> Swallow
 * 'all' noun -> Swallow;

The only keyword ensures that the redirection applies just to the listed verbs. Here we have
also added the replace keyword, which tells Inform to ignore completely the old grammar
for these verbs and instead utilise the new one we have defined. Of course, your drinkable
objects now need to handle the three actions Sip, Swig and Swallow instead of simply Drink;
additional code is usually the price of thoroughness.

Can I remove an existing verb?

Now that we know how to add new verbs, and modify or extend existing ones, only one
challenge remains: preventing Inform from recognising a verb that's already defined in
Grammar.h. Of course, just editing it out of the file is one way, but as always it's safer to
override the Library rather than change it. So, define these routines:

 [Anything; ! Ignore the remaining input line
 while (NextWordStopped() ~= -1);
 return GPR_PREPOSITION;
];

 [NoSuchVerbSub; L__M(##Miscellany, 38);];

Having done that, you can Extend...replace the existing verbs that you wish to remove. For
example, if Momma don't allow no swearwords used round here:

 Extend 'shit' replace
 * Anything -> NoSuchVerb;

 Extend 'bother' replace
 * Anything -> NoSuchVerb;

More information
in the DM: §31

http://www.inform-fiction.org/manual/html/s31.html

 6 · Verbal Versatility

 93

Why are actions labelled Group 1, Group 2 or Group 3?

The labelling is just a handy way of distinguishing between three types of behaviour:

• Group 1 actions are things like SAVE, SCORE and the debugging
verbs. They're called 'meta' actions because they control the game
itself and -- unlike the other two groups -- don't increment the time
and turns counters, nor otherwise affect the model world within the game. It's pretty
unusual to create your own Group 1 actions, which you do by including the word meta
after the Verb directive.

• Group 2 actions are 'active' things like TAKE, CLOSE, EXAMINE and INVENTORY. For all
of these, the standard library action either changes the state of the model world, or
displays some information about it. An object's before property can intercept one of
these actions to substitute alternative behaviour for what the library would otherwise do,
or simply to prohibit it completely in some or all circumstances. An object's after
property can step in once the library action has happened, but before the player has
been told; this is the point to add some supplementary behaviour, or to display a
customised message to the player.

• Group 3 actions are 'passive' things like TOUCH, ATTACK, CLIMB and CUT. For all of
these, the standard library action simply displays some message of bland refusal or
neutral feedback; no change to the state of the model world occurs. As before, an
object's before property can intercept one of these actions to supply a better message,
or to substitute some more active behaviour. However, that's as far it it normally goes;
because the library doesn't change the model world, there isn't an 'afterwards' that
differs from the previous state, and so the library ignores an object's after property even
if you provide one.

So, what makes an action 'Group 2' or 'Group 3'? It's pretty simple, really; it just comes
down to what you write in the action routine. Here's a typical Group 2 action routine:

 [CloseSub;
 if (ObjectIsUntouchable(noun)) return; ! Line 1
 if (noun hasnt openable) return L__M(##Close,1,noun); ! Line 2
 if (noun hasnt open) return L__M(##Close,2,noun); ! Line 3
 give noun ~open; ! Line 4
 if (AfterRoutines() || keep_silent) rtrue; ! Line 5
 L__M(##Close,3,noun); ! Line 6
];

• In Line 1, the action routine gives up immediately if the target object is out of reach and
can't physically be closed; the ObjectIsUntouchable() routine will already have
displayed an appropriate message, so CloseSub() can simply return.

• Lines 2 and 3 display appropriate messages if the target object can't logically be closed,
using the L__M() routine to do the actual output.

• If we get as far as Line 4, the CLOSE is guaranteed to work, so we modify the state of
the target object. That tiny attribute change is all that actually happens; it's only in your
imagination that the heavy oak lid comes crashing down.

• Line 5 calls AfterRoutines(), which invokes the target object's after property (if it has
one) and returns whatever that property returned. If that's true, the after property has
already displayed a message, so we can finish without further ado. We also quit here if
the library variable keep_silent has been set.

• If we get to Line 6, the action has been performed but the player doesn't yet know, so
we use L__M() to display a confirmatory "You close the ..."

Contrast that routine with this typical Group 3 action:

 [CutSub; L__M(##Cut,1,noun);];

and you can see the difference: just a message; no state change, no call to
AfterRoutines(). It doesn't matter what you try to CUT; nothing's going to change unless
you make it happen.

More information in
the DM: §6 Table 6

http://www.inform-fiction.org/manual/html/s6.html
http://www.inform-fiction.org/manual/html/tables.html#tbl6a

6 · Verbal Versatility

 94

So let's do just that -- turn CutSub() into a Group 2 routine. For compatibility with the
current library behaviour, we want to be able to classify an object as a 'cutter' or 'cuttable' or
-- usually -- neither. A successful CUT will require a 'cutter' working on a 'cuttable' (for
example, CUT ICE WITH AXE); other combinations (such as CUT ICE WITH PENGUIN or CUT
SNOWMOBILE WITH KNIFE) won't be allowed.

We'll use local property variables for the 'cutter' and 'cuttable' classification, like this:

 Object -> "hazel tree"
 with name 'hazel' 'tree' 'branch' 'branches',
 description "The lower branches are firm and straight.",
 cuttable 1;

 Object -> "knife"
 with name 'knife',
 description "Sharp enough for light wood-cutting.",
 cutter 1;

And then all we've got to do is to write a more powerful CutSub() to Replace the one in the
library, and Extend the grammar a little. Here it all is:

 Replace CutSub;

 Include "VerbLib";
 Include "Grammar";

 [CutSub x;
 if (~~(noun provides cuttable && noun.cuttable)) ! Line 1
 return L__M(##Cut,1,noun); ! Line 2
 if (second) { ! Line 3
 if (~~(second provides cutter && second.cutter)) ! Line 4
 print_ret (The) second, " can't cut anything."; ! Line 5
 } ! Line 6
 else ! Line 7
 "You need to specify a sharp implement."; ! Line 8
 if (AfterRoutines() || keep_silent) rtrue; ! Line 9
 "You make a small incision in ", (the) noun, "."; ! Line 10
];

 Extend 'cut'
 * noun 'with' noun -> Cut;

• Lines 1 and 2 test whether the target object is cuttable; most object aren't, and so
we generate the conventional "Cutting that up would achieve little".

• Line 3 tests whether a second object (...WITH KNIFE) was mentioned.
• Lines 4 and 5 test whether the second object is a cutter; most object aren't, and so

we say so.
• We get to Line 8 if there was no second object, so we remind players what they've

omitted.
• By Line 9, we know we've got a cuttable and a cutter, so we're all systems go. The

AfterRoutines() and keep_silent work exactly as before.
• If we get to Line 10, the action has been performed but the player doesn't yet know,

so we display a confirmatory message.

That's a splendid stuff, except that you might notice one tiny omission: we haven't actually
changed the state of the model world in any way (as we did with give noun ~open; in
CloseSub() above). There's a good reason for this: the library doesn't include a cut
attribute, and you can easily see why if you think of a few examples. Consider CUT CAKE,
CUT CORN, CUT MYSELF, CUT PHONE LINE, CUT ROPE... the results are significantly
different, and you usually need to do something more sophisticated than just setting or
clearing an attribute, something specific to the object being cut.

 6 · Verbal Versatility

 95

How do we do this? the object's after property provides a perfect spot. By the time we call
AfterRoutines() at Line 9, we know that the CUT action is theoretically possible; we can
just let the after property decide whether to actually go ahead, and with what outcome.
Ideally, the after should always return true, so our "incision" message should never appear
in practice. Let's explain this with an example; we'll enhance our cuttable tree so that the
player can hack off a walking staff (once only, but that should be sufficient).

 Object -> "hazel tree"
 with name 'hazel' 'tree' 'branch' 'branches',
 description "The lower branches are firm and straight.",
 cuttable 1,
 after [;
 Cut:
 if (staff in self) {
 move staff to player;
 "You select a straight branch, neatly cut it from the tree,
 and trim away the side twigs to form a stout walking
 staff.";
 }
 else
 "It would be vandalism to hack off another branch.";
];

 Object -> -> staff "walking staff"
 with name 'walking' 'staff' 'stick' 'pole',
 description
 "About five feet long, and a little thicker than your thumb.";

Initially, we hide the staff object as a child of the tree (which doesn't have container or
transparent attributes, so the player won't know that it's there). When the player cuts the
tree with his knife, the after property moves the staff into his possession, and the
if (staff in self) ... test prevents any further tree surgery. By using similar principles,
you should be able to handle most CUT X WITH Y requirements.

We're nearly done; just time for a couple of enhancements to our CutSub(). Since cuttable
and cutter are actually variables, we can use them for more than simple true/false flags. In
the following code, they're treated as a sort of Moh's Hardness Scale, wherein for example a
cuttable value of 3 can only be cut by a cutter whose value is 3 or more, so that a penknife
could cut paper, but not wood. The other enhancement is more intelligent handling of the
situation where the player's CUT TREE omits the WITH KNIFE. A objectloop searches for a
suitably powerful cutter in scope and, if it finds exactly one such implement, uses it by
default. These additional features add only a few lines to the routine:

 [CutSub x;
 if (~~(noun provides cuttable && noun.cuttable))
 return L__M(##Cut,1,noun);
 if (second) {
 if (~~(second provides cutter && second.cutter))
 print_ret (The) second, " can't cut anything.";
 if (second.cutter < noun.cuttable)
 print_ret (The) second, " isn't sharp enough to cut the ", (the)
 noun, ".";
 }
 else {
 objectloop (x provides cutter && TestScope(x) && x.cutter >=
 noun.cuttable)
 if (second == nothing) second = x;
 else second = -1;
 if (second <= 0) "You need to specify a sharp implement.";
 print "(with ", (the) second, ")^";
 }
 if (AfterRoutines() || keep_silent) rtrue;
 "You make a small incision in ", (the) noun, ".";
];

6 · Verbal Versatility

 96

How do I detect the player entering a room, or trying to leave?

You need to trap the "Go" action in before and after properties of rooms. A room's before
routine is considered when the PC is trying to leave that room, while an after routine is
triggered for the room where the PC arrives. In both cases noun is one of the direction
objects (n_obj, s_obj, and so on) representing the direction of movement, so you can test
for paths that need special handling; otherwise, your rules apply to all exits or entrances.

Before: The PC's action of moving in the desired direction triggers whatever special
behaviour you have coded. If the routine returns true, the action is interrupted and the PC
remains in the same location; if not, the normal movement rules apply. For example:

 Object kitchen "Kitchen"
 with description
 "An old room, devoid of furniture. There's a big window set
 in the west wall.",
 before [; Go:
 if (noun == w_obj) {
 if (kitchen_window has open)
 "The fall might be hazardous to your health.";
 "Bonk! You walk into the closed window.";
 }
 if (kitchen_window has open) {
 give kitchen_window ~open;
 print "Before you leave the kitchen, you close the window.^";
 }
],
 n_to corridor,
 has light;

The lines concerning Westerly movement all return true, preventing the player from heading
into oblivion, while those for other movements return false, thus permitting him to leave by
any remaining exit, closing the window if necessary and printing an appropriate message on
the way out.

After: The coded rules happen just after the PC arrives in the room, but before the room
description is printed; if the routine returns true, no description appears on the screen. For
example:

 Object traps_room "Traps Room"
 with description
 "Yet another dangerous room in the Mad Overlord's castle.",
 after [; Go:
 if (noun == s_obj && black_door.snare == true) {
 print "Just as you enter the room, you hear a loud click
 and watch in horror as tens of steel daggers fly in
 your direction.^";
 deadflag = 1;
 rtrue;
 }
 if (noun == w_obj && children(player)>=3) {
 print "^Under the weight of your possessions,
 the floor gives way and you fall into...^";
 PlayerTo(cellar);
 rtrue;
 }
 if (noun == u_obj) {
 PlayerTo(self);
 "[That was some nice climbing.]";
 }
],
 n_to passage,
 e_to throne_room,
 has light;

More information
in the DM: §8

http://www.inform-fiction.org/manual/html/s8.html

 6 · Verbal Versatility

 97

Quite a few possibilities are going on in this example. The PC gets killed if he enters the
room by heading South from the passage (and the trap of the door is set); note that we
return true, so that the room description will not be printed after the "Just as you..."
message. If the PC comes West from the throne_room with three or more possessions, he
will fall into the cellar; the custom message "Under the weight..." is printed before the new
room description (which, thanks to PlayerTo(), will be the cellar instead of the traps_room).
Again, we return true to prevent the cellar's description being printed twice -- once for
PlayerTo() and once for normal movement rules -- though this could also have been
avoided by coding PlayerTo(cellar,1). Finally, if the PC climbs back up from the cellar, we
get another message, but this time it will be printed after the room description; note that the
printing syntax is returning true by itself.

You may trap "Go" actions both in before and after properties of the same room. In the
above example, you could easily provide a realistic touch (or a clue) to the falling trap by
adding:

 before [; Go: if (noun == e_obj)
 print "[stepping over the weak-looking section of floor]^";
],

It's useful to know the sequence of actions performed by the library when the player moves
to a new location -- especially the order in which text is printed -- so that you may interrupt
the process at will or include a message in the desired place. This list (which apart from the
PC's movement is very similar to the sequence for a "Look" action)
is a simplified model, ignoring the evaluation of light and the
possibility of the player being in a container or on a supporter.

Let's suppose that the player is in room ORIGIN, where he issues a GO command which
takes him into a DESTINATION room:

 Library action Commentary

 1 ORIGIN.before(); Then skip to Step 12 (without movement) if before property
includes Go: ... rtrue;

 2 location = DESTINATION; Also move player to DESTINATION

 3 location.after(); Then skip to Step 12 if after property includes Go: ... rtrue;

 4 location.initial(); ... if location provides this property

 5 NewRoom(); ... if this optional Entry Point exists

 6 print location's room name Then skip to Step 9 if location has a visited attribute and the
game isn't in VERBOSE mode

 7 location.describe(); ... if location provides this property; then skip to Step 9

 8 location.description();

 9 list objects in location According to standard description rules

10 LookRoutine(); ... if this optional Entry Point exists

11 give location visited; Also award ROOM_SCORE points if location has scored and
~visited attributes

12 run daemons and timers

13 location.each_turn(); ... if location provides this property

14 print command prompt ">"

More information in the
DM: §6 §20 §21 §26 §27

http://www.inform-fiction.org/manual/html/s6.html
http://www.inform-fiction.org/manual/html/s20.html
http://www.inform-fiction.org/manual/html/s21.html
http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s27.html

6 · Verbal Versatility

 98

Notes: The initial property can be either a routine -- which location.initial() runs -- or a string --
which location.initial() prints; the same applies to the description and each_turn properties.
Also, this list excludes the rarely-used Entry Points GamePreRoutine() (called before Step 1) and
GamePostRoutine() (called before Step 4 and before Step 12) -- processing then skips to Step 12
if any of these returns true.

Trapping "Go" actions is not limited to prevent PC movement or printing messages; it may
perform as much mischief as you desire. You could for instance silently detect arrival into a
room so that a daemon or a timer is triggered unbeknownst to the player:

 Object cell "Cell"
 with description "A small cube of solid stone walls.",
 before [; Go: StopTimer(self);],
 after [; Go: StartTimer(self, 4);],
 time_left 0,
 time_out [;
 self.w_to = "The door is jammed.";
 give self ~light;
 "The door suddenly slams shut.";
],
 w_to torture_chamber,
 has light;

Finally, here are two Room classes which print a message as you move from one room to
another. The first reacts in the old room, before the move happens, while the second waits
until you reach the new room:

 Class Room
 with description "UNDER CONSTRUCTION",
 before [dirProp;
 Go: ! 'noun' contains a compass object (eg e_obj);
 dirProp = noun.door_dir; ! convert it to direction property
 ! (eg e_to)
 if (self provides dirProp && self.dirProp ofclass Object &&
 (self.dirProp hasnt door || self.dirProp has open))
 print "You leave the room.^";
],
 has light;

 Class Room
 with description "UNDER CONSTRUCTION",
 after [;
 Go: print "You leave the room.^";
 <<Look>>;
],
 has light;

Where have I been?

The location and real_location variables specify the player's current room. You may wish
to know the room you were in previously; this isn't held in any library variable, so you need
to find a way of remembering it. Here's one method.

 Object roomStack
 with stack 0,
 push [room i;
 for (i=self.#stack/2-1 : i>0 : i--)
 self.&stack-->i = self.&stack-->(i-1);
 self.&stack-->i = room;
],

 6 · Verbal Versatility

 99

 pop [room i;
 room = self.&stack-->0;
 for (i=0 : i<self.#stack/2-1 : i++)
 self.&stack-->i = self.&stack-->(i+1);
 self.&stack-->i = nothing;
 return room;
],
 peek [i;
 if (i<0 || i>=self.#stack/2) return nothing;
 return self.&stack-->i;
];

 Class Room
 with description "UNDER CONSTRUCTION",
 after [;
 Go: roomStack.push(real_location);
],
 has light;

This is slightly more complex than is strictly necessary, but it makes for an interesting
example. We create a roomStack object, whose role is to provide both storage for the 32
most recently-visited locations (in its stack property), and also three property routines for
manipulating the stack. roomStack.push(room) pushes room onto the stack,
roomStack.pop() pops the top room off the stack, and roomStack.peek(i) returns the ith
visited room: 0 is the current location, 1 is the previous room, 2 is the one before that, and
so on. In this example we don't actually need the pop property: it's defined only for
completeness.

As in the previous topic, we create a Room class with an after property; its role here is to
push the current location onto the stack. Then, to print the name of the room you were in
previously, you might type:

 print "You've just come from ", (name) roomStack.peek(1), ".^";

While we're on the subject, here's an associated technique: enabling the player to jump
directly to a previously-visited room. To do this, you need to give each of your rooms a
sensible name property, and then add this code:

 [GoRoomSub;
 if (noun == location) "But you're here already!";
 print "If only it was always this easy to go to the...^";
 PlayerTo(noun);
];

 [scope_room x;
 switch (scope_stage) {
 1: rfalse;
 2: objectloop (x ofclass Room)
 if (x has visited) PlaceInScope(x);
 rtrue;
 3: "You can't quite remember how to get there.";
 }
];

 Extend 'go' first
 * 'to' scope=scope_room -> GoRoom;

6 · Verbal Versatility

 100

How can I parse a number?

You might need to deal with numeric input in a command like ADJUST DIAL TO 3 or SET
COURSE TO 180. The Library file Grammar.h includes some suitable grammar:

 Verb 'set' 'adjust'
 * noun -> Set
 * noun 'to' special -> SetTo;

That special token must be doing the business, but trying to find it in the DM4 proves
difficult -- it's not described anywhere! Going back to the DM3 gives us the ominous warning
"any single word or number (obsolete and best avoided)" -- hardly an auspicious start -- but
it's part of the library and it does work. So here's an abstract scenery object which can be
SET:

 Object course "course"
 with name 'course' 'heading' 'bearing' 'direction',
 description [; "Your current course is ", self.number, " degrees.";],
 number 0, ! current course in degrees 0..359
 before [;
 SetTo: switch (second) {
 0 to 359: self.number = second;
 360: self.number = 0;
 default: "There are only 360 degrees in a circle!";
 }
 "You set the course to ", self.number, " degrees.";
 Examine: ;
 default: "Don't be silly!";
],
 found_in [; return true;],
 has scenery;

The object's before property traps the SetTo action, and since special was the second
token in the grammar line, the numeric value is available in the second variable. SET and
EXAMINE are the only supported verbs: any other action results in "Don't be silly!". The
object uses found_in to make itself present throughout the game; you could instead simply
position it in one room like the ship's bridge, or restrict it to a single area:

 found_in [; return (location ofclass OnBoardShip);],

Employing an obsolete token doesn't give a warm fuzzy feeling, so let's
update the grammar to use the (properly documented) number token
instead. While we're here, we'll also extend it to handle SET COURSE TO
WEST, and various shortened forms and synonyms:

 Extend 'set' replace
 * noun -> Set
 * number -> Set
 * 'to'/'towards'/'for' noun -> SetTo
 * 'to'/'towards'/'for' number -> SetTo
 * noun 'to'/'towards'/'for' noun -> SetTo
 * noun 'to'/'towards'/'for' number -> SetTo;

 Verb 'steer' 'sail' 'navigate' 'head' 'aim' = 'set';

Here's the revised 'course' object to deal with this lot; it's less complex than it looks:

More information
in the DM: §31

http://www.inform-fiction.org/manual/html/s31.html

 6 · Verbal Versatility

 101

Object course "course"
 with name 'course' 'heading' 'bearing' 'direction',
 description [; "Your current course is ", self.number, " degrees.";],
 number 0, ! current course in degrees 0..359
 try_number [dir; ! dir is a number of degrees?
 switch (dir) {
 0 to 359: ;
 360: dir = 0;
 default: dir = -1000;
 print "There are only 360 degrees in a circle!^";
 }
 return dir;
],
 try_object [dir; ! dir is a direction object?
 switch (dir) {
 n_obj: dir = 0;
 e_obj: dir = 90;
 s_obj: dir = 180;
 w_obj: dir = 270;
 default: dir = -1000;
 print "That's not a proper direction!^";
 }
 return dir;
],
 try_dict [dir; ! dir is a dictionary word?
 switch (dir) {
 'north','n//': dir = 0;
 'east','e//': dir = 90;
 'south','s//': dir = 180;
 'west','w//': dir = 270;
 default: dir = -1000;
 print "That's not a proper direction!^";
 }
 return dir;
],
 react_before [x;
 Set,SetTo:
 if (second == nothing)
 if (inp1 == 1) x = self.try_number(noun);
 else x = self.try_object(noun);
 else
 if (inp2 == 1) x = self.try_number(second);
 else x = self.try_object(second);
 if (x < 0) rtrue;
 self.number = x;
 "You set the course to ", self.number, " degrees.";
],

 before [;
 Examine: ;
 default: "Don't be silly!";
],
 found_in [; return true;],
 has scenery;

We've added three property routines -- try_number, try_object, and
try_dict -- to provide validation and data mapping. We use these routines
when we trap the Set and SetTo actions, which we do in a react_before
property rather than in before: this enables us to handle command like STEER 180 and SAIL
TO THE SOUTH in which the 'course' object isn't actually mentioned. Notice the use of the
library variables inp1 and inp2, normally the same as noun and second respectively, but
set to 1 when noun or second contains a literal number rather than an object reference.

More information
in the DM: §6

http://www.inform-fiction.org/manual/html/s6.html

6 · Verbal Versatility

 102

Just to round things off, let's add an NPC who can do the steering on our command; that is,
SAY SOUTH TO SAILOR or SAILOR,SET COURSE TO WEST or SAILOR,STEER 180 or even
SAILOR,270.

 Object "sailor"
 with name 'sailor' 'pilot' 'helm' 'helmsman' 'steersman',
 life [x;
 Answer:
 if (consult_words ~= 1) return L__M(##Answer,1,noun);
 x = TryNumber(consult_from);
 if (x ~= -1000) x = course.try_number(x);
 else x = course.try_dict(noun);
 if (x < 0) rtrue;
 course.number = x;
 "~Course set to ", course.number, " degrees, sir.~";
],
 orders [x;
 Go,Set,SetTo:
 if (second == nothing)
 if (inp1 == 1) x = course.try_number(noun);
 else x = course.try_object(noun);
 else
 if (inp2 == 1) x = course.try_number(second);
 else x = course.try_object(second);
 if (x < 0) rtrue;
 course.number = x;
 "~Course set to ", course.number, " degrees, sir.~";
 NotUnderstood:
 x = course.try_number(special_number);
 if (x < 0) rtrue;
 course.number = x;
 "~Course set to ", course.number, " degrees, sir.~";
],
 has animate;

In this skimpy implementation, the life property handles only Answer
(SAY word to SAILOR, where word is a single number or a compass
direction in the dictionary). The orders property deals with Go
(SAILOR,EAST and SAILOR,GO EAST), Set (SAILOR,SET 90 and SAILOR,SAIL EAST), and
NotUnderstood (SAILOR,90 which uses the special_number library variable).

Which action is triggered by each verb?

To deal with a particular english verb in a property like before or life, you need to know
which action is triggered, because it's actions that you intercept, not verbs. Usually, you can
do this by finding the verb in Grammar.h; for example, as we showed in the previous topic,
you'll discover that the SET verb triggers the Set and SetTo actions.

Sometimes, one action gets translated to another during processing, which can be a bit
confusing. For example, Drop (a worn object) can become Disrobe, Examine (a container
object) can become Search, and Transfer can variously become PutOn or Drop or Insert.
Here are two techniques to help you discover what's going on.

First, use the ACTIONS debugging command, which tells you the current action and its
parameters:

 >ACTIONS
 [Action listing on.]

 >SIT ON ROCK
 [Action Enter with noun 29 (rock)]
 That's not something you can sit down on.

Second, where that doesn't work (for example, sometimes when issuing an order to an NPC),
include this line of debugging code at the start of your before or life or orders property:

More information in the
DM: §16 §17 §18

More information
in the DM: §7

http://www.inform-fiction.org/manual/html/s16.html
http://www.inform-fiction.org/manual/html/s17.html
http://www.inform-fiction.org/manual/html/s18.html
http://www.inform-fiction.org/manual/html/s7.html

 6 · Verbal Versatility

 103

 orders [x;
 #ifdef DEBUG; print "[Action=", (debugAction) action, "]^"; #endif;
 Go,Set,SetTo:
 ...

which tells you this:

 >SAILOR,EAST
 [Action=Go]
 "Course set to 90 degrees, sir."

 >SAILOR,100
 [Action=<fake action 9>]
 "Course set to 100 degrees, sir."

The fake actions are defined in Parser.h; 0 is Receive, through to 9 is NotUnderstood.

Can I distinguish SIT ON BED from LIE ON BED?

Inform's standard grammar maps several verbs -- including ENTER, GET
INTO/ONTO, STAND ON, SIT ON and LIE ON -- to the single action of
Enter. You can Enter an object which has an enterable attribute, so a
basic bed object looks and works something like this:

 Object -> bed "bed"
 with name 'bed',
 description "It's a pretty regular bed.",
 has enterable supporter static;

 Your bedroom
 A spartan cell.

 You can see a bed here.

 >SIT ON BED
 You get onto the bed.

 >GET OFF BED
 You get off the bed.

 Your bedroom
 A spartan cell.

 You can see a bed here.

There are a couple of potential problems with this. First, LIE, SIT and STAND are treated
identically -- you're either on the bed or you're not -- and second the act of getting off the
bed causes the room description to be replayed. This is because it's handled by the Exit
action, which is perhaps geared more towards climbing out of a container such as a vehicle
or a wardrobe than simply getting off a supporter such as a bed or chair.

In order to deal with these issues, we'll build a Bedlike class, useful for beds, sofas, benches
and similar feathered horizontal surfaces. In fact, we'll do it twice, once using the methods
described above to Extend the standard grammar, and then again using a different technique
which keeps the grammar unchanged. Here's the extended grammar for the first solution:

 [SitOnSub; <<Enter noun>>;];
 [LieOnSub; <<Enter noun>>;];
 [StandOnSub; <<Enter noun>>;];

 Extend only 'sit' replace
 * 'on' 'top' 'of' noun -> SitOn
 * 'on'/'in'/'inside' noun -> SitOn;

More information in
the DM: §12 §15

http://www.inform-fiction.org/manual/html/s12.html
http://www.inform-fiction.org/manual/html/s15.html

6 · Verbal Versatility

 104

 Extend 'lie' replace
 * 'on' 'top' 'of' noun -> LieOn
 * 'on'/'in'/'inside' noun -> LieOn;

 Extend 'stand' replace
 * -> Exit
 * 'up' -> Exit
 * 'on' 'top' 'of' noun -> StandOn
 * 'on' noun -> StandOn;

 Extend only 'climb'
 * 'on' 'top' 'of' noun -> StandOn
 * 'on' noun -> StandOn;

You'll see that we're pulling apart the existing grammar -- in which all of those verbs trigger
the Enter action -- and redirecting them to distinct SitOn, LieOn and StandOn actions. Then,
to avoid breaking any other objects which rely on the standard behaviour, we create default
handlers for the new actions which simply invoke Enter, so that the whole thing works
exactly as before. However... we can now create a Bedlike class which doesn't conform to
the normal pattern, but instead intercepts the new actions:

 Class Bedlike
 with sit_or_lie false,
 before [;
 Enter,StandOn:
 if (self == parent(player) && self.sit_or_lie == false)
 return L__M(##Enter,1,self);
 move player to self;
 self.sit_or_lie = false;
 if (AfterRoutines() || keep_silent) rtrue;
 "You stand on ", (the) self, ".";
 SitOn:
 if (self == parent(player) && self.sit_or_lie == action)
 return L__M(##Enter,1,self);
 move player to self;
 self.sit_or_lie = action;
 if (AfterRoutines() || keep_silent) rtrue;
 "You sit on ", (the) self, ".";
 LieOn:
 if (self == parent(player) && self.sit_or_lie == action)
 return L__M(##Enter,1,self);
 move player to self;
 self.sit_or_lie = action;
 if (AfterRoutines() || keep_silent) rtrue;
 "You lie on ", (the) self, ".";
],
 react_before [;
 Exit:
 if (self == parent(player)) {
 move player to parent(self);
 if (self.sit_or_lie) {
 self.sit_or_lie = false;
 if (AfterRoutines() || keep_silent) rtrue;
 "You stand up.";
 }
 if (AfterRoutines() || keep_silent) rtrue;
 "You climb off ", (the) self, ".";
 }
],
 has supporter static;

 Bedlike -> bed "bed"
 with name 'bed',
 description "It's a pretty regular bed.",
 after [; LieOn: "You settle down for a short nap.";];

 6 · Verbal Versatility

 105

The class's before property deals with the regular Enter action, and with our new StandOn,
SitOn and LieOn actions. In each case, the action first tests if it has anything useful to do
and if not -- for example SIT ON BED when the player is already seated -- displays the
standard refusal message "But you're already on the bed". Otherwise it moves the player
into position and uses the sit_or_lie property to remember whether he's sitting or lying
down. Next, it calls the AfterRoutines() library routine in case the Bedlike object has
provided an after property; a true return value from such a property would prevent us
displaying our confirmation message, as would a true value in the keep_silent library
variable.

Because the Exit action isn't directed to a specific object, we can't handle it using a before
property; instead, we react_before an Exit and trap the action only if this Bedlike object is
the player's parent. Effectively, we've completely replaced the Library's standard processing
for Enter and Exit of Bedlike objects, and so we've now no need for an enterable attribute.
And here's the outcome:

 Your bedroom
 A spartan cell.

 You can see a bed here.

 >GET ON BED
 You stand on the bed.

 >GET OFF BED
 You climb off the bed.

 >SIT ON BED
 You sit on the bed.

 >LIE ON BED
 You settle down for a short nap.

 >GET OFF BED
 You stand up.

In our alternative approach, we don't need to Extend the grammar; the class's before
property deals only with the Enter action, and distinguishes SIT and LIE by inspecting the
Library variable verb_word which holds the dictionary value for the verb in the current
command. The remainder of the class definition is the same as our previous example, and it
works identically:

 Class Bedlike
 with sit_or_lie false,
 before [;
 Enter:
 if (verb_word == 'sit' or 'lie') {
 if (self == parent(player) && self.sit_or_lie == verb_word)
 return L__M(##Enter,1,self);
 move player to self;
 self.sit_or_lie = verb_word;
 if (AfterRoutines() || keep_silent) rtrue;
 if (verb_word == 'sit')
 "You sit on ", (the) self, ".";
 else
 "You lie on ", (the) self, ".";
 }
 else {
 if (self == parent(player) && self.sit_or_lie == false)
 return L__M(##Enter,1,self);
 move player to self;
 self.sit_or_lie = false;
 if (AfterRoutines() || keep_silent) rtrue;
 "You stand on ", (the) self, ".";
 }
],
 ...

More information
in the DM: §18

http://www.inform-fiction.org/manual/html/s18.html

6 · Verbal Versatility

 106

Incidentally, should you wish to distinguish between, for example, LIE IN BED and LIE ON
BED, you could either Extend the grammar further, by defining separate LieIn and LieOn
actions, or you could use this routine to return the word following the verb, and then test it
against 'in' and 'on':

 [WordAfterVerb w;
 w = verb_wordnum + 1;
 if (w > parse->1) return 0; ! Nothing following the verb
 w = parse-->(w*2 - 1);
 if (w) return w; ! Following word has this value
 return -1; ! Following word not in dictionary
];

Which verb did the player use?

When the player types something like OFFER WATER TO HORSE, the
parser sets up four variables to represent the command: action (in
this example, 'Give') defines what's to be done, along with noun (the
'water' object) and second (the 'horse' object); in addition, actor (usually 'selfobj') is the
object to whom the command is directed.

It's easy to process the noun and second objects, including if necessary printing their
names: print (name) noun; is all that it takes. It's a bit trickier, though, to get back to the
original command verb if that's what you want to display. You've got three sources of
information:

• the action variable which we've just mentioned; however, this hold the action
triggered by the verb rather than the verb itself (for example, the verbs GIVE, FEED,
OFFER and PAY all cause the same 'Give' action);

• the verb_word variable, which hold the actual verb's dictionary address; however,
this value reflects only the verb itself, not any subsequent preposition which may
modify its effect (for example, LOOK, LOOK AT, LOOK IN and LOOK UNDER each
triggers a different action, but verb_word will contain 'look' in all cases);

• the buffer and parse arrays, which hold the actual characters typed by the player.

There are a few further complications; the verb may be:

• abbreviated -- for example, L is treated as equivalent to LOOK;
• truncated -- for example, PHOTOGRAPH is stored in the dictionary as 'photograp';
• implied -- for example, NORTH is taken to mean GO NORTH;
• not the first word -- as in, for example, HORSE,EAT HAY.

What all this means is that you've got quite a bit of work to do if you want to be able to
reproduce the original command as the player mentally formulated it. Here's one way of
tackling the problem:

 [PrintVerbWord
 i j k;

 ! print the (possibly implied, possibly abbreviated) verb

 if (action == ##Go && verb_word ~= 'go' or 'run' or 'walk' or 'leave')
 print "go";
 else
 if (LanguageVerb(verb_word) == false) { ! expand an abbreviation?
 #Ifdef TARGET_ZCODE;
 j = parse->(4*verb_wordnum + 1); ! start posn in buffer
 k = parse->(4*verb_wordnum); ! number of characters
 #Ifnot; ! TARGET_GLULX
 j = parse-->(3*verb_wordnum); ! start posn in buffer
 k = parse-->(3*verb_wordnum - 1); ! number of characters
 #Endif; ! TARGET_
 for (i=0 : i<k : i++) print (char) Lowercase(buffer->(i+j));
 }

More information in
the DM: §16 §18 §30

http://www.inform-fiction.org/manual/html/s16.html
http://www.inform-fiction.org/manual/html/s18.html
http://www.inform-fiction.org/manual/html/s30.html

 6 · Verbal Versatility

 107

 ! possibly append a modifying preposition

 switch (action) {
 ##Ask:
 print " about";
 ##AskFor:
 print " for";
 ##AskTo:
 print " to";
 ##Consult:
 if (verb_word == 'look' or 'l//') print " up";
 if (verb_word == 'read') print " about";
 ##Disrobe:
 if (verb_word == 'take') print " off";
 ##Drop:
 if (verb_word == 'put') print " down";
 ##EmptyT:
 if (verb_word == 'empty') print " into";
 ##Enter:
 if (verb_word == 'get' or 'go') print " in";
 if (verb_word == 'lie' or 'sit' or 'stand') print " on";
 ##Examine:
 if (verb_word == 'look' or 'l//') print " at";
 ##Exit:
 if (verb_word == 'get') print " off";
 if (verb_word == 'stand') print " up";
 ##GetOff:
 if (verb_word == 'get') print " off";
 ##Go:
 print " "; LanguageDirection(noun.door_dir);
 ##Insert:
 if (verb_word == 'drop' or 'discard' or 'put' or 'throw')
 print " in";
 ##JumpOver:
 print " over";
 ##LookUnder:
 if (verb_word == 'look' or 'l//') print " under";
 ##PutOn:
 if (verb_word == 'drop' or 'discard' or 'put' or 'throw')
 print " on";
 ##Remove:
 if (verb_word == 'get' or 'take') print " off";
 ##Search:
 if (verb_word == 'look' or 'l//') print " in";
 ##SetTo:
 print " to";
 ##SwitchOff:
 print " off";
 ##SwitchOn:
 print " on";
 ##Take:
 if (verb_word == 'pick') print " up";
 ##Tell:
 if (verb_word == 'tell') print " about";
 ##ThrowAt:
 print " at";
 ##Wear:
 if (verb_word == 'put') print " on";
 }
];

6 · Verbal Versatility

 108

How do 'meta' verbs work?

As we said earlier, a meta verb controls the game itself, rather than affecting the model
world within the game. When the parser finds that the player has typed a verb tagged as
'meta', it sets a variable -- also called meta -- to true. This has two main effects:

1. prior to performing the requested action, the BeforeRoutines() processing is
omitted -- that is, GamePreRoutine() isn't called, and no react_before or before
properties are executed.

2. after performing the requested action, the entire
InformLibrary.end_turn_sequence() processing is omitted -- that is, the time
and turns counters are unchanged, no daemons or timers run, and no each_turn
properties are executed.

Also, the meta verbs are of Group 1; this, like Group 3, doesn't change the model world,
there isn't an 'afterwards' that differs from the previous state, and so the AfterRoutines()
processing is omitted -- that is, no react_after or after properties are executed, and
GamePostRoutine() isn't called.

Occasionally, you may find the need to set meta to true in a verb's action routine. Since this
is called between steps 1 and 2 above, the result is to prevent the end_turn_sequence()
processing, but not any BeforeRoutines() processing (because by then it's too late).
Here's a neat technique allowing a verb to be both meta and non-meta. The author wants to
define ABOUT FACE and ABOUT TURN verbs, to cause the PC to look behind him. This is
probably a Group 2 action, since it'll change the model world slightly. However, he also
wants to permit ABOUT as a synomym for HELP and INFO -- a meta verb providing
information about the game itself. This first attempt won't work, because the same verb
can't appear in more than one grammar:

 [HelpSub; ...];
 [AboutFaceSub; ...];

 Verb meta 'about' 'help' 'info'
 * -> Help;

 Verb 'about'
 * 'face'/'turn' -> AboutFace;
But this second try works fine:
 Verb meta 'help' 'info'
 * -> Help;

 [isMeta; meta = true; return GPR_PREPOSITION;];

 Verb 'about'
 * 'face'/'turn' -> AboutFace
 * isMeta -> Help;

isMeta() is an example of a "general parsing routine". In this case, it's pretending to have
matched a preposition (like 'face' or 'turn' in the line above), though actually it's done
nothing of the sort. All that's happened is that meta has been set to true; the effect is that
ABOUT with nothing following it is now handled the same as HELP and INFO.

More information
in the DM: §31

http://www.firthworks.com/roger/informfaq/vv.html#12
http://www.inform-fiction.org/manual/html/s31.html

 7 · Bothered By Bugs

 109

7 · Bothered By Bugs

What can I expect when I run my first program?

Once you've fixed all the annoying little syntax errors which previously stopped your game
from compiling (see What can I expect when I try to compile my program?), you win the
pleasure of actually being able to play it. All too often that pleasure is short-lived; almost
immediately you'll start to notice deficiencies -- some subtle, some glaringly obvious -- that
need to be improved or mended. This is a perfectly normal experience, and you should
expect to spend a considerable period exploring the ways in which your game fails to behave
as you'd intended.

When correcting the problems that you'll inevitably discover, you should move slowly and
cautiously. Work on one issue at a time: identify what's wrong, change the program (maybe
only a single line), recompile, and test what you've just done. If you're lucky, you've fixed
the problem. If you're unlucky, not only may the problem still remain, but something else
may have gone wrong. This is also all too common, but by recompiling frequently and
immediately testing the change, you'll much more quickly home in on what's gone wrong
and how to fix it. One of the biggest causes of frustration comes from making a large
number of changes all at once, not recompiling until every modification is in place, then
finding that the game doesn't work nearly as well as it did before... and not having any idea
which of the many changes did the real damage.

By the way, if you're about to embark on major surgery to a working program, save a copy
of the file before proceeding. That way, if things go seriously pear-shaped, you can always
revert to that copy, rather than trying to undo all the individual changes.

Help! What's wrong with my code?

Just because you've found all the mistakes which prevented your game
from compiling, and you've resolved the warning messages -- you have
got rid of them, haven't you? -- it doesn't follow that your game is free
from bugs. Here are some common traps for the unwary Inform novice.

1. The "string"; statement prints the string, outputs a newline, and then returns. This is
probably the most common Inform gotcha. If you write these lines:

 "The fire is ";
 if (self has general) print "blazing fiercely";
 else print "smouldering gently";
 print " in the grate.";

then the compiler will complain that the second line is unreachable. It won't complain if you
write this, though the situation is just the same:

 if (self has general) "The fire is blazing fiercely";
 else "The fire is smouldering gently";
 print " in the grate.";

Fix: change to ordinary print statements:

 if (self has general) print "The fire is blazing fiercely";
 else print "The fire is smouldering gently";
 print " in the grate.";

2. An if and an else each control the single statement which follows. If you write these lines
then you're like to see that the fire "continues to blazesuddenly flares up".

 if (self has general) print "continues to blaze"

More information
in the DM: §40

http://www.firthworks.com/roger/informfaq/pp.html#8
http://www.inform-fiction.org/manual/html/s40.html

7 · Bothered By Bugs

 110

 else give self general; print "suddenly flares up";

Fix: wrap braces around the multiple statements:

 if (self has general) print "continues to blaze"
 else { give self general; print "suddenly flares up"; }

3. An else relates to the immediately-preceding if. If you write these lines then you're likely
to see just "The grate is".

 print "The grate is ";
 if (grate has on)
 if (self has general) print "hot";
 else print "cold.";

Fix: wrap braces around the second if, or combine the two ifs:

 print "The grate is ";
 if (grate has on) {
 if (self has general) print "hot";
 }
 else print "cold.";
 print "The grate is ";
 if (grate has on && self has general) print "hot";
 else print "cold.";

4. Don't confuse logical not '~~' with bitwise not '~'. If you write these statements, then
you'll always print "ok":

 if (~self in location) print "ok";

This is because the condition self in location evaluates to either false (0) or true (1). A
bitwise 'not' toggles each individual bit: '~' applied to 0 ($$0000000000000000) gives -1
($$1111111111111111), which is true; '~' applied to 1 ($$0000000000000001) gives -2
($$1111111111111110), which is also true.

Fix: use '~~' instead:

 if (~~self in location) print "ok";

A logical 'not' toggles the true/false meaning of all the bits taken together; '~~' applied to 0
($$0000000000000000) gives 1 ($$0000000000000001), which is true; '~~' applied to 1
($$0000000000000001) gives 0 ($$0000000000000000), which is false.
For the same reason, don't confuse '&&' and '||' (which are quite commonly used) with '&'
and '|' (found much more rarely).

5. Don't apply the test '== true' to something which can have a value other than 0 or 1. If
you write these statements, then you'll not print "ok" if number is 2,3,...:

 if (self.number == true) print "ok";

Fix: change the test to one of these:

 if (self.number) print "ok";
 if (self.number ~= false) print "ok";

6. Don't write just number (or any other property name) instead of self.number (or
object.number) -- things will mysteriously fail to work.

 7 · Bothered By Bugs

 111

7. Beware of creating name properties with impossible values, such as single letters 'g'
(that's a character constant, not a dictionary word) and phrases 'g string' (the parser
tests only single words, not phrases with spaces in them). This is correct:

 name 'g//' 'string' 'gstring' 'g-string',

8. If you refer to a routine without '()' afterwards, the result is the address of that routine
rather than the value which it returns:

 x = myRoutine; ! wrong: x contains the address of myRoutine
 x = myRoutine(); ! correct: x contains the return value from running
 ! myRoutine

9. If you get unexpected 0s and 1s appearing, check the next topic.

10. Arithmetic is limited to numbers in the range -32768..0..32767. If you add or multiply
two numbers giving a result outside that range, the outcome may be unexpected.

11. Don't use the found_in property for moveable objects; they'll magically return home if
the player tries to walk off with them. found_in is intended only for objects with a
scenery attribute.

Why do I get spurious 0s and 1s in my printout?

Almost certainly, because you've called a routine in the middle of the print statement. The
next answer describes the syntax trick to avoid this problem, but here's why it happens.
Consider this tiny fragment of code:

 [Squared x; print x*x;];

 print "The square of ", 4, " is ", Squared(4), ".^";

What happens here is: the print statement outputs "The square of 4 is ", then calls the
routine. The routine outputs the answer of 16 and returns. The print statement then outputs
1 -- the value returned by the routine -- followed by the fullstop and newline. The value
returned by the routine? Yes, every routine returns a value, which depends on the last
executed statement in the routine.

If the last executed statement
is...

then the value returned
by the routine is...

return value; value

return; or
rtrue;

true (1)

rfalse; false (0)

] at the end of a standalone
routine

true (1)

] at the end of an embedded
routine

false (0)

More information in the DM: §1.7

As an aide-memoire, remember
the letter pairs ST…EF:
Standalone routines end as True.
Embedded routines end as False,

http://www.firthworks.com/roger/informfaq/bb.html#1
http://www.firthworks.com/roger/informfaq/bb.html#2
http://www.inform-fiction.org/manual/html/s1.html#s1_7

7 · Bothered By Bugs

 112

A 'standalone' routine is one that has a name and exists in its own right;
like Squared above. An 'embedded' routine is one without a name which
you include within an object definition as the value of a property:

 with description [; code to print an object's description],
 ...

What's the difference between Squared(x) and (Squared) x?

It's the difference between the spurious 0 and 1 problem occurring, and not. If your program
reads:

 print "The square of ", 4, " is ", Squared(4), ".^";

then the output you'll get is:

 The square of 4 is 161.

However, if you modify the program, leaving the routine unchanged but treating it as a print
rule, so that the line now reads:

 print "The square of ", 4, " is ", (Squared) 4, ".^";

then the output you'll get, correctly, is:

 The square of 4 is 16.

This funny little syntax trick, which applies only when printing, has the effect of calling the
specified routine but not outputting the value which it returns. That is, if
the routine itself includes a print statement, that's what gets output;
should the routine happen not to include a print statement, nothing gets
output.

How can I make the debugging process easier?

You're going to be doing a lot of it; much IF authorship comprises brief periods of enjoyable
creativity separated by longer spells of laborious testing and frustrating bug hunts. So, if
only from a sense of self-preservation, you'd be well advised to get to grips with Inform's
debugging capabilities. Two techniques are of particular value:

Automated replay. During testing, you'll be going over the same ground
time and time again. You can save yourself from sore fingers, and also
catch those nasty regression problems where an innocuous change here
has an unexpected impact on well-tested code there, by setting up a script of commands
which you can REPLAY over and over. It's easy to create such a script with RECORDING ON,
typing in the commands, and then closing with RECORDING OFF. Since the script is just an
ASCII file, one command per line, you can also create it using an editor, and similarly you
can extend an existing script by including additional commands in appropriate places.

Object inspection and manipulation. The extra debugging verbs
provide internal information, and enable you to fiddle with objects'
locations; you can save yourself time by cheating in this way, rather
than having to modify the source and recompile every time. The most commonly-used
commands are these:

More information
in the DM: §3.5

More information
in the DM: §1.12

More information
in the DM: §7.1

More information in
the DM: §7.3 §7.5

http://www.inform-fiction.org/manual/html/s3.html#s3_5
http://www.inform-fiction.org/manual/html/s1.html#s1_12
http://www.inform-fiction.org/manual/html/s7.html#s7_1
http://www.inform-fiction.org/manual/html/s7.html#s7_3
http://www.inform-fiction.org/manual/html/s7.html#s7_5

 7 · Bothered By Bugs

 113

Use this command... to do this...

SHOWOBJ Display the properties and attributes of the current location.

SHOWOBJ obj_name Display the properties and attributes of obj_name.

TREE Display the complete object hierarchy.

TREE obj_name Display the object hierarchy below obj_name.

SCOPE List the objects currently in scope.

PURLOIN obj_name Add obj_name to your inventory.

ABSTRACT obj_name TO
parent_obj_name

Make obj_name a child of parent_obj_name.

GONEAR obj_name Jump to the location containing obj_name.

GOTO obj_number Jump to the location numbered obj_number.

For more powerful interventions, such as changing variables and setting
attributes, you can bring the Infix debugger into play (just include the -X
switch when compiling). Infix is slightly harder to master than the basic
debug verbs, but can be a godsend when the going gets tough.

If you're already familiar with the UNIX tool gdb, you might
like to try the Nitfol interpreter, which incorporates a gdb-like
debugger. On the other hand, if you're not already a gdb
expert, you probably shouldn't try learning it here.

Why does my game mention "a apple"?

Apparently, the business of outputting "an" rather than "a" before a word beginning with a
vowel is by default handled by the interpreter rather than the compiler; unfortunately, some
interpreters get it wrong (EXAMPLE?). To be safe, give objects which need it an explicit
article property:

 Object apple "apple"
 with name ’apple’ ’fruit’,
 article "an",
 ...

What were Vile Zero Errors From Hell?

That was the fanciful name for a nasty error condition which
crashed the Z-machine if X happened to be zero when
executing statements like these:

 child(X), parent(X), sibling(X), ...
 if (X.property == ...) ..., X.property = ...
 if (X has attribute) ..., give X attribute
 move X to ..., move ... to X, remove X

Since the availability of Strict error checking in Library 6/21, it's rare for games to crash in
this way; instead, you'll just get a runtime error message. You still need to fix the error, but
at least nowadays you know pretty well where to start looking.

More information
in the DM: §7.6

There's some more information
about compiling and debugging
on Roger Firth's InfLight pages

For more background
information, see Andrew
Plotkin's detailed explanation.

http://www.inform-fiction.org/manual/html/s7.html#s7_6
http://www.firthworks.com/roger/inflight/index.html
http://www.eblong.com/zarf/vileerror.html

7 · Bothered By Bugs

 114

I've found an Inform problem -- what should I do?

Like any other complex system, the Inform software and its associated documentation
contain errors of varying severity. If you think that you've found something wrong, don't just
sigh and move on: please, report the problem. The first thing to do, obviously, is to check
and re-check your suspicions. Once you've convinced yourself that something really is
wrong, then you should study the various published lists; it's quite possible that you're not
the first person to have happened upon the problem. There are pages devoted to various
topics; each tells you who to write to if you wish to report a new problem or add another
suggestion:

problems with the compiler
problems with the library
errors in the Designer's Manual
errors in the Beginner's Guide
suggestions for future enhancements

If your problem lies elsewhere -- perhaps in the interpreter you're using, or in a library
contribution -- then you should write directly to its author. It's generally considered impolite
to baldly announce in the rec.arts.int-fiction newsgroup that you've found a bug, though you
can ask for assistance there in determining the exact nature of the problem you're
experiencing.

http://www.inform-fiction.org/patches/compiler.html
http://www.inform-fiction.org/patches/library.html
http://www.inform-fiction.org/patches/misprints.html
http://www.firthworks.com/roger/IBG.html
http://www.firthworks.com/roger/suggest.html

 9 · Worldly Woes (advanced)

 115

8 · History And Hereafter

Where's this Archive that's mentioned so often?

A truly invaluable service to the whole IF community -- not just us Inform programmers -- is
performed by David Kinder and Stephen Granade, the custodians of the IF Archive (and for
nine years previously, by Volker Blasius at the GMD in Germany: thank you, thank you,
Volker). The Archive is a hierarchy of logically-organized storage locations containing files --
games, solutions, hints, maps, compilers, interpreters, editors, and much more -- which
have been created by IF enthusiasts over the past ten or so years. Whatever you're looking
for, if it's non-commercial IF, then it's probably in the Archive.

The Archive is, since August 2001, held on a FTP site in America, with mirror sites in other
locations around the world. You can inspect its contents by visiting ftp://ftp.ifarchive.org/if-
archive/, but you'll probably find it more approachable using the HTTP interface at
http://www.ifarchive.org/, since this conveniently gives a description of each file. Because of
its scale, the Archive can be a bit daunting at first; here are the locations of most immediate
interest to Inform programmers and players.

As you become more assured in your use of Inform, you may create something -- a game,
say, or a Library package -- which belongs in the Archive. To upload your file, first get hold
of a decent FTP program (for the PC I recommend WS_FTP LE which is free for non-
commercial use), and then follow these steps:

1. Start your FTP program and connect to host name "ftp.ifarchive.org". Use "Automatic
detect" for the host type, "anonymous" as the User ID, and your email address as
the password.

2. When you're connected, select the host's incoming directory.
3. Normally, select ASCII as the file type; use Binary if you're uploading a .Z5 or .Z8

game, or some other non-text file.
4. Copy the file into the Archive's folder, and then close the connection.
5. Send an email message to submissions@ifarchive.org, containing three items:

o the name of the file that you've just uploaded;
o the location within the Archive where you'd like it to be stored (for example

games/zcode or infocom/compilers/inform6/library/contributions);
o a short description of the file -- look at similar Archive files to get a feel for

what to say and how to say it.

ftp://ftp.ifarchive.org/if-archive/
ftp://ftp.ifarchive.org/if-archive/
http://www.ifarchive.org/
http://www.ipswitch.com/

9 · Worldly Woes (advanced)

 116

Glulx? What's that all about?

(This is a very brief overview: For a readable and more
detailed introduction to this topic, I highly recommend
Adam Cadre's Gull pages.)

When you run an Inform interpreter like Frotz or Zip, it's
actually implementing, in software, an imaginary
computer called the Z-machine. As far as we know, a Z-
machine has never existed as a physical pile of
components bolted together, but lots and lots of them
have been conjured into being using emulation by
computer programs.

The Z-machine was devised by the founders of Infocom
back in 1979, and it has survived the last twenty-some
years pretty well. Nevertheless, its design is nowadays
acknowledged to be rather old-fashioned, being short of
addressable memory and lacking support for today's
sound and graphic standards. In order that Inform
games can become larger, louder, and more colourful,
the Z-machine needs to be superseded by a reworked
Virtual Machine.

Glulx is that new VM, designed to overcome the Z-machine's limitations; it's the work of
Andrew Plotkin (commonly known as Zarf and often to be found around the IF newsgroups).
The internal architecture of Glulx is quite different from that of the Z-machine (for example,
it's based on computer words of 32 bits, not the 16 bits of the Z-machine) but that isn't too
important. What does matter is that Zarf has enhanced the Inform compiler so that it knows
about Glulx. This is great news! It means that you don't need to learn anything much that's
new; you can just keep on writing Inform games according to the Designer's Manual, and the
Glulx compiler will turn them into code that runs on Glulxe, the interpreter for the Glulx
system.

Remember back when explaining What is Inform?, we illustrated the phrase the "explored ...
with an interpreter program" with a screenshot? Well, here's the same game running under
Glulx... except that by adding one extra statement we can illustrate our location:

http://www.adamcadre.ac/gull/gull.html
http://www.firthworks.com/roger/informfaq/ss.html#1

 9 · Worldly Woes (advanced)

 117

Here are the Archive locations of most immediate interest to Glulx programmers and players:

When you're ready to try Glulx, you just need to use the -G compiler switch. You'll also have
to download an interpreter; if you're using the layout that I suggested earlier, a suitable
empty folder is already in place for you to download into. Associate the ".ulx" extension with
the Glulxe interpreter, and away you go.

Who, or what, is Platypus?

You can visualise the Inform system as having four major components:

• the game -- a file of Inform source code: this is the bit that you write, while the
remaining components are universal;

• the compiler -- a program designed by Graham Nelson to read Inform source files
and generate Z-machine code;

• the interpreter -- any of a family of programs, created by different people, which
run that code and thus let you play the game;

• the library -- several Inform source files defining a sophisticated command-line
parser and the skeleton environment and behaviour of Graham's model world which
your game inhabits.

When we talk about "the library" we almost always mean the nine files provided by Graham
and described in the DM4, which enable you to create objects with standard properties and
attributes, to call standard routines, and to manipulate standard data structures. However,
there's nothing sacred about those nine files: the Inform code which they contain, though
long and complex, is freely available and can if desired be changed or even replaced.

Which is what Anson Turner has done to produce Platypus -- an alternative library which you
can use instead of Graham's. Platypus offers roughly the same capabilities as the standard
library, but in a manner which is not necessarily identical or interchangeable: you need to
choose which library to work with. For example, Platypus replaces the twelve directional
properties n_to, e_to, etc with a single dirs property, and enhances the standard before
and after properties with a more flexible seven-stage process. Similarly, some attributes
disappear (including lockable and scenery) while others -- including inside, under and
upon -- have been added.

You can download Platypus from the Archive. And, you might be
interested in seeing Owen Muniz's version of Cloak of Darkness,
modified to use Platypus rather than the standard library.

For information on
moving towards Glulx,
see Roger Firth's
JustEnoughGlulx pages

John Wood has published an
HTML version of the Platypus
documentation

http://www.firthworks.com/roger/glulx/index.html
http://www.firthworks.com/roger/informfaq/pp.html#1
http://www.elvwood.org/InteractiveFiction/Platypus/
http://www.elvwood.org/InteractiveFiction/Platypus/
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html
http://www.firthworks.com/roger/informfaq/cloak_plat.inf

 9 · Worldly Woes (advanced)

 119

9 · Worldly Woes (advanced)

How can I get rid of those damn walls?

There are two problems in this area: EXAMINE NORTH replies "You see nothing special about
the north wall." even for external locations, and EXAMINE WALL prompts "Which wall do you
mean, the north wall, the south wall ... ?". This code, though slightly messy to implement,
fixes those problems and, as a bonus, also supports LOOK [TO THE] NORTH using David
Cornelson's CompassLook enhancement.

1. Unavoidably, you need to edit English.h. Right at the start of that file, move the line
IFNDEF WITHOUT_DIRECTIONS; up slightly, and its matching ENDIF; down slightly,
so that they enclose the entire definition and use of CompassDirection (this will have no
effect on the vast majority of games which don't define WITHOUT_DIRECTIONS):

 IFNDEF WITHOUT_DIRECTIONS;

 Class CompassDirection
 with article "the", number 0
 has scenery;

 Object Compass "compass" has concealed;

 CompassDirection -> n_obj "north wall"
 with name 'n//' 'north' 'wall',
 door_dir n_to;
 ...
 CompassDirection -> in_obj "inside"
 with door_dir in_to;

 ENDIF;

2. At the start of your game, define WITHOUT_DIRECTIONS:

 Constant Story "MYGAME1";
 Constant Headline "^My first Inform game.^";
 Constant WITHOUT_DIRECTIONS;

3. Between the Includes of Parser.h and VerbLib.h, place these lines:

Include "Parser";

!---!
Class CompassDirection
 with number 0,
 description [;
 if (location provides compasslook && location.compasslook(self))
 rtrue;
 print "You see nothing special ";
 if (self ~= u_obj or d_obj) print "to the ";
 print_ret (name) self, ".";
],
 compasslook 0, ! use it somewhere just to satisfy the compiler
 has scenery;

Object Compass "compass" has concealed;

CompassDirection -> n_obj "north" with door_dir n_to,
 name 'n//' 'north';
CompassDirection -> s_obj "south" with door_dir s_to,
 name 's//' 'south';

This topic has been
superseded by libray 6/11

http://www.onyxring.com/informguide.asp?article=23

9 · Worldly Woes (advanced)

 120

CompassDirection -> e_obj "east" with door_dir e_to,
 name 'e//' 'east';
CompassDirection -> w_obj "west" with door_dir w_to,
 name 'w//' 'west';
CompassDirection -> ne_obj "northeast" with door_dir ne_to,
 name 'ne' 'northeast';
CompassDirection -> nw_obj "northwest" with door_dir nw_to,
 name 'nw' 'northwest';
CompassDirection -> se_obj "southeast" with door_dir se_to,
 name 'se' 'southeast';
CompassDirection -> sw_obj "southwest" with door_dir sw_to,
 name 'sw' 'southwest';
CompassDirection -> u_obj "above" with door_dir u_to,
 name 'u//' 'up' 'above' 'ceiling' 'roof' 'sky';
CompassDirection -> d_obj "below" with door_dir d_to,
 name 'd//' 'down' 'below' 'floor' 'ground';
CompassDirection -> out_obj "outside" with door_dir out_to;
CompassDirection -> in_obj "inside" with door_dir in_to;
!---!

 Include "VerbLib";

4. After the Include of Grammar.h, place these lines:

 Include "Grammar";

 Extend 'look'
 * noun=ADirection -> Examine
 * 'to' noun=ADirection -> Examine;

5. In any Room With A View, optionally include a compasslook property:

Room study "Your study"
 with description "There is a doorway to the east of this austere room.",
 compasslook [obj;
 if (obj == u_obj or d_obj) rfalse;
 if (obj == e_obj) "You see a doorway.";
 "You see the wall.";
],

 e_to hallway;

How can I embed object details in a room's description?

Normally, Inform prints a room's description, and then lists the objects currently in that
room:

 The farmyard
 A nondescript area between the house to the west and a gaping wooden
 barn to the east.

 You can see a turkey here.

It isn't really surprising to find a turkey in a farmyard, so having it listed in a separate
paragraph like this has the effect of unnaturally drawing the player's attention to it -- "Aha!
If a turkey is called out, it must be important!". Now perhaps the turkey is important, but
you'd prefer the player to work that out for herself. What you'd like to present is something
like this, where the turkey is only mentioned casually as part of the general scene:

 The farmyard
 A nondescript area between the house to the west and a gaping wooden
 barn to the east. A turkey scratches in the dust.

One way of achieving this is to use the describe property. Here's a fragment of the game:

 9 · Worldly Woes (advanced)

 121

 Room farmyard "The farmyard"
 with description [;
 print "A nondescript area between the house to the west
 and a gaping wooden barn to the east.";
 if (turkey in self) print " A turkey scratches in the dust.";
 new_line;
],
 e_to barn,
 w_to farmers_house;

 Room barn "Wooden barn"
 with description [;
 print "The farmyard opens to the west of this cluttered old
 building.";
 if (turkey in self) print " A turkey pecks at scattered straw.";
 new_line;
],
 w_to farmyard;

 Room farmers_house "Farmer's house"
 with description "You're in a house.",
 e_to farmyard;

 Object turkey "turkey" farmyard
 with name 'turkey',
 description "Nice and plump -- Thanksgiving must be near.",
 describe [;
 if (self in farmyard or barn) rtrue;
 "^A turkey hops around.";
];

In rooms where you want the turkey to blend in (such as the Farmyard and Barn), do two
things:

1. append an appropriate throwaway turkey reference to the room's description if the
turkey is actually present (don't forget the leading space).

2. include that room in the turkey's describe property in the list of locations which simply
rtrue (which causes the turkey not to be listed separately).

In other rooms (such as the Farmer's house) do nothing; if the turkey should stray there, it
will be listed separately as usual.

Is it possible to disable TAKE ALL?

Many authors dislike the Library's built-in support for TAKE ALL, for a couple of reasons: it
generates foolish messages by attempting to take scenery and static objects, and it reveals
objects whose presence the author may not wish to make readily apparent.

Processing of ALL is handled by the grammar tokens multi, multiheld, multiexcept and
multiinside. One way of disabling ALL is to re-write the relevant routines in Parser.h, but
this would be a mammoth task, far far too complex to describe here. Another way is to
change the Library's grammar definitions -- in Grammar.h or by using
Extend...replace directives -- to change the multi tokens to the simpler
noun and held. However, this is not a good idea, because it would remove
also the ability to list nouns explicitly: TAKE BELL, BOOK AND CANDLE
would have to become TAKE BELL. TAKE BOOK. TAKE CANDLE.

So here's a third way. The ChooseObjects() entry point allows you to
influence which objects are included by an ALL. It's easy enough to specify
that for the action ##Take (triggered by, for example: GET ALL, PICK UP
ALL, REMOVE ALL, TAKE ALL), the ALL simply doesn't match anything,
though for other actions it works as before. Here's the code:

More information in
the DM: §14 §26

More information
in the DM: §33

For a more
sophisticated
solution, look at
takeall.inf from
Kory Heath and
Lucian Smith

http://www.inform-fiction.org/manual/html/s14.html
http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s33.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html

9 · Worldly Woes (advanced)

 122

 [ChooseObjects obj code
 retval;
 obj = obj; ! Avoid a compiler warning
 switch (code) {
 0: ! Parser is excluding obj from ALL
 ; ! ... accept parser's decision
 1: ! Parser is including obj in ALL
 if (action_to_be == ##Take) retval = 2;
 ! ... force exclusion if TAKE; accept otherwise
 2: ! Parser is asking for 'appropriateness' hint
 ; ! ... but we don't provide one
 }
 return retval;
];

This works fine, though the fact that TAKE ALL now generates the standard message "There
are none at all available!" irrespective of how many objects are in scope is awkward and
misleading. So let's fix that, by defining a LibraryMessages object:

 Include "Parser";

 Object LibraryMessages
 with before [;
 Miscellany:
 if (lm_n == 44 && action_to_be == ##Take)
 "You can't use ALL in this context.";
];

 Include "VerbLib";

where we intercept Miscellany message 44 -- "There are none at all available!" -- and, for a
##Take action, substitute a more appropriate replacement.

Can I avoid printing "(which is empty)" after a container?

When Inform is listing the objects in a room -- "You can see a
rusty axe and some blood here." -- it provides additional
information about containers and supporters. For example, you
might encounter "You can see a fish tank (in which is a brick (on which is a bottle (which is
empty))) here.", not perhaps the ideal form of presentation.

It turns out that none of the standard object properties will change those parenthetical
clauses. invent ought to -- "This routine is for changing an object's inventory listing" -- and
it does indeed provide exactly the desired control when displaying the player's possessions,
but it has no effect when listing the objects in a room. While this is not necessarily a bug,
you may well wish to alter the default behaviour; here's one way.

Unfortunately, the fix requires a change to the standard list-maker WriteListFrom(); this
routine creates all object lists printed by the library, and its behaviour is controlled by a
series of 'style' bits. During an player inventory, the library calls WriteListFrom() with the
FULLINV_BIT style setting, while the call to list a room's contents includes the PARTINV_BIT
style setting. The problem is that the code which deals with FULLINV_BIT takes note of an
object's invent property (if it has one), while the code for PARTINV_BIT does not.

To make the PARTINV_BIT code recognise an optional invent property, small modifications
are needed to two library routines: WriteBeforeEntry() and WriteAfterEntry(). Rather
than edit verblibm.h directly -- messing with the library is always a somewhat traumatic
activity -- you can use my complete ready-to-run replacements for the two routines. Simply
download Roger Firth's WriteList.h from the Archive, and #Include it in your game
between Parser.h and VerbLib.h. That's all.

More information
in the DM: §25

This topic has been
superseded by libray 6/11

http://www.inform-fiction.org/manual/html/s25.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html

 9 · Worldly Woes (advanced)

 123

If an object has an invent property, it will be invoked in the usual way (with inventory_stage
first set to 1, and then set to 2) both when mentioning that object in a room description, and
when listing it in the player's inventory. By default you'll get the same output each time. If
you need to distinguish between the two occasions, you can test (c_style&PARTINV_BIT) --
true during a room description -- or (c_style&FULLINV_BIT) -- true during an inventory.
Here's an example:

 Include "Parser";
 Include "WriteList";
 Include "VerbLib";

 Object -> "sack"
 with name 'sack',
 invent [;
 ! When listing objects in the player's inventory
 if (c_style&FULLINV_BIT) rfalse;

 ! When listing objects at the end of a room description
 if (inventory_stage == 1) switch (children(self)) {
 0: print "an empty sack";
 1: print "a sack containing ", (a) child(self);
 default: print "an assortment of objects in a sack";
 }
 rtrue;
],
 has container open;

Can I avoid printing "(the objectname)" after certain commands?

One feature of the Inform parser is its ability -- in the right circumstances -- to infer which
object the player intended. For example:

 >INV
 You are carrying:
 a red ball
 a blue ball

 >DROP
 What do you want to drop?

 >BALL
 Which do you mean, the red ball or the blue ball?

 >RED
 Dropped.

 >DROP
 (the blue ball)
 Dropped.

In first part of this example, the parser handles the ambiguity of which ball to drop. In the
second part, when there is no longer any ambiguity, the parser makes an inference -- that
the blue ball must be the intended object -- and drops it without further prompting. But not
without telling you what it's doing; hence you see "(the blue ball)" displayed.

Mostly, this is helpful, or at worst harmless. Just occasionally, it seems unnecessary and
intrusive (for instance, in the discussion on water below -- on such occasions, you might well
wish to turn the feature off):

 >POUR WATER INTO BARREL
 (the water into the barrel)
 You pour the water into the barrel.

More information in
the DM: §26 §27

http://www.inform-fiction.org/manual/html/s26.html
http://www.inform-fiction.org/manual/html/s27.html
http://www.firthworks.com/roger/informfaq/ww.html#8

9 · Worldly Woes (advanced)

 124

Sadly, there's no easy way. The heart of the parser, defined in parserm.h, is an 800-line
routine called Parser__parse(). Three-quarters of the way through, this is the code
responsible for the inference message:

 if (inferfrom ~= 0) {
 print "("; PrintCommand(inferfrom); print ")^";
 }

where inferfrom is a global variable set (mainly) when another library routine --
NounDomain() -- has determined (a) that the player hasn't specified an object
unambiguously, and (b) that this doesn't matter, because it can infer what must have been
intended.

So, your options are to edit parserm.h and comment-out those three lines, to Replace
Parser__parse() with your own variant which omits the lines... or to live with the situation.
I recommend this last course of action.

How does the list-maker work?

The Library includes a routine for displaying lists of objects, used primarily by LOOK (to
present the visible objects in the current room) and by INVENTORY (to present the player's
possessions). The routine is described in the DM4, but the information on how best to
employ it is frustratingly brief: "the best way is to experiment" is Graham's none-too-helpful
advice. The routine is this:

 WriteListFrom(object, style, depth);

where object is the first object to be listed, usually child(location) or child(player), style
is a magic number defining the form of the required listing, and depth is an undocumented
value, usually 0 but sometimes 1 (or higher?). It's the business of getting the style number
right -- by combining control bits -- which is the tricky part. There are thirteen defined bits,
capable of being combined in over 8000 ways; fortunately, the vast majority of the
combinations don't do anything distinctive, so that we can reduce the problem to something
manageable. I can identify only eleven basic styles, arbitrarily labelled A-K, which we'll
explain by example. Here's an 'interesting' collection of objects:

 Object "tray" selfobj has supporter;
 Object -> -> "bottle" has container;
 Object -> -> -> "wine" with article "some";
 Object -> -> "glass" has container open;
 Object -> -> -> "drop of water";
 Object -> -> "dish" has supporter;
 Object -> -> -> "tablet";

 Object "box" selfobj has container openable open;
 Object -> -> "bell";
 Object -> -> "book" has container openable lockable locked;
 Object -> -> "candle" has light;

and here's how WriteListFrom() describes them:

Style style bits Result

A ENGLISH_BIT a tray and a box

B ENGLISH_BIT+RECURSE_BIT a tray, on top of which are a bottle, a glass, inside which is
a drop of water and a dish, on top of which is a tablet and
a box, inside which are a bell, a book and a candle

More information
in the DM:§27

http://www.inform-fiction.org/manual/html/s27.html

 9 · Worldly Woes (advanced)

 125

C ENGLISH_BIT+RECURSE_BIT+
PARTINV_BIT

a tray, on top of which are a bottle (which is closed), a
glass, inside which is a drop of water and a dish, on top of
which is a tablet and a box, inside which are a bell, a book
(which is closed) and a candle

D ENGLISH_BIT+RECURSE_BIT+
PARTINV_BIT+TERSE_BIT

a tray (on which are a bottle (which is closed), a glass (in
which is a drop of water) and a dish (on which is a tablet))
and a box (in which are a bell, a book (which is closed) and
a candle)

E ENGLISH_BIT+RECURSE_BIT+
FULLINV_BIT

a tray, on top of which are a bottle, a glass, inside which is
a drop of water and a dish, on top of which is a tablet and
a box (which is open), inside which are a bell, a book
(which is closed and locked) and a candle (providing light)

F ENGLISH_BIT+RECURSE_BIT+
FULLINV_BIT+TERSE_BIT

a tray (on which are a bottle, a glass (in which is a drop of
water) and a dish (on which is a tablet)) and a box (which
is open) (in which are a bell, a book (which is closed and
locked) and a candle (providing light))

G NEWLINE_BIT a tray
a box

H NEWLINE_BIT+RECURSE_BIT a tray
a bottle
a glass
a drop of water
a dish
a tablet
a box
a bell
a book
a candle

I NEWLINE_BIT+RECURSE_BIT+
INDENT_BIT

 a tray
 a bottle
 a glass
 a drop of water
 a dish
 a tablet
 a box
 a bell
 a book
 a candle

J NEWLINE_BIT+RECURSE_BIT+
INDENT_BIT+PARTINV_BIT

 a tray
 a bottle (which is closed)
 a glass
 a drop of water
 a dish
 a tablet
 a box
 a bell
 a book (which is closed)
 a candle

K NEWLINE_BIT+RECURSE_BIT+
INDENT_BIT+FULLINV_BIT

 a tray
 a bottle
 a glass
 a drop of water
 a dish
 a tablet
 a box (which is open)
 a bell
 a book (which is closed and locked)
 a candle (providing light)

9 · Worldly Woes (advanced)

 126

Notes:

• All styles also accept +ISARE_BIT (which displays "is" or "are" at the front of the list).
• All styles also accept either +DEFART_BIT (which displays "the" instead of "a" before each object),

or +NOARTICLE_BIT (which omits "a" altogether).
• All styles also accept +CONCEAL_BIT (which ignores an object with a concealed or scenery

attribute).
• All styles also accept +WORKFLAG_BIT. When depth=0, this ignores an object unless it (or one of

its parents) has a workflag attribute. When depth>0, this has no effect. In theory you can apply
this attribute yourself to various objects in order to create a customised list; in practice the
workflag attribute is primarily for use by the Library and thus prone to being set and cleared; you'll
need to establish your settings immediately prior to calling WriteListFrom().

• In styles H, I, J and K, you can replace +RECURSE_BIT (which ignores a child object unless its
parent has a supporter, or transparent, or container plus open attribute) by +ALWAYS_BIT
(which always includes it).

• In styles G, H, I, J and K, the display ends with a newline.
• Styles B, C and E misrepresent the inventory, by implying that objects are erroneously in or on

previously-listed objects; see the Inform Patch List. The use of +TERSE_BIT removes the
ambiguity.

• A normal INVENTORY [TALL] command uses style K; an INVENTORY WIDE uses style E.
• LOOK uses style D (as part of messages 4, 5 and 6), as does the Locale() Library routine.
• OPEN uses style A (as part of message 4), and SEARCH uses style A (as part of messages 3 and 7).

Occasionally you may wish to override the prevailing style of listing, for example by having a
'tall' inventory display the contents of one item on a single line. You can create your own list-
writer to do this, by using an object's invent property. However, you can only reliably use
WriteListFrom() within an invent routine if you obtain the specially-modified version of
WriteListFrom() which is included in WriteList.h (described in the previous topic).

For example, to simplify the presentation of the box -- by mentioning only the immediate
child objects inside it while ignoring any lower-level children, and also by omitting descriptive
comments like "(providing light)" -- you could try this:

 Object "box" selfobj
 with invent [;
 if (inventory_stage == 2 && child(self)) {
 print " (in which";
 WriteListFrom(child(self), ENGLISH_BIT+ISARE_BIT);
 print ")";
 rtrue;
 }
];
 has container openable open;

This enhancement takes effect in any style which uses PARTINV_BIT or FULLINV_BIT
(and so affects room descriptions as well as inventories); for example style C now produces
"a tray, on top of which are a bottle (which is closed), a glass, inside which is a drop of water and a dish,
on top of which is a tablet and a box (in which are a bell, a book and a candle)" and style K gives:

 a tray
 a bottle
 a glass
 a drop of water
 a dish
 a tablet
 a box (in which are a bell, a book and a candle)

Incidentally, here's a tiny routine which walks the object tree, starting from a given object, in
exactly the same way as WriteListFrom(). For each object obj that RunRoutineFrom()
finds, it calls R(obj):

http://www.inform-fiction.org/patches/L61018.html
http://www.firthworks.com/roger/informfaq/aa.html#10

 9 · Worldly Woes (advanced)

 127

 [RunRoutineFrom o R
 obj;
 objectloop (obj from o) {
 R(obj);
 if (child(obj)) RunRoutineFrom(child(obj), R);
 }
];

These two code fragments produce the same output:

 [PrintIt obj; print_ret (a) obj;];
 RunRoutineFrom(myObj, PrintIt);

 WriteListFrom(myObj, NEWLINE_BIT+ALWAYS_BIT);

Could you explain what "in scope" means?

Scope is one of those topics which can be as easy or as complex as you
care to make it. Let's try to make it easy.

Put simply, what's "in scope" -- roughly, the things you can EXAMINE -- is represented by
the contents of the room you're currently in: yourself, your possessions, and any other
objects in that particular room. By convention, even in an external location the surrounging
walls are opaque, preventing you from seeing objects in the adjacent rooms.

Almost all of the time, Inform takes care of scope by itself. Providing that you've set your
object attributes correctly, you'll see fixed objects and portable objects, supporters and any
objects on them, containers and any objects in them (but only if the container is open), cats
and dogs and NPCs. Further, you can usually TOUCH, TASTE, TAKE any object (unless it's
locked inside a glass case), and you need only some very simple before properties to deal
with the obvious exceptions: objects which are in the distance, repulsive, ludicrously heavy,
and so on. The point is: the library does an excellent job of managing scope, so that you
usually get the desired effect with very little effort.

Just occasionally, though, you need to extend the standard scope, by enabling the player to
mention an object which isn't clearly lying around in the room. There are two main
techniques available: you can hide the requisite object inside the room by some means, or
you can tell the interpreter to look for it somewhere else entirely.

Smuggling extra objects into the room. We're now assuming that you want the player to
be able to refer to objects even though they're not listed as part of the room's contents. Your
options include:

• The concealed attribute. Such objects don't get listed but can be TAKEn if the player

knows they're there. Also...
• The scenery attribute. Such objects don't get listed, and can't be TAKEn. Actually, these

differences are largely academic, because you'd be unlikely to permit TAKE on objects of
this type. Here's an example, which might be polluting a single room or, by means of a
found_in property, be detectable in several locations:

Object "awful smell"
 with name 'awful' 'smell' 'stench' 'stink' 'odour',
 react_before [;
 Smell: if (noun == nothing) <<Smell self>>;
],
 before [;
 Smell,Taste: "Ugh!";
 default: "It's hard to do that to a smell.";
],
 has concealed;

• Containment within a transparent object. Such objects don't get listed and can't be
TAKEn, but do move around with their parent if that's portable. For example:

More information
in the DM: §32

http://www.inform-fiction.org/manual/html/s32.html

9 · Worldly Woes (advanced)

 128

Object "remote control"
 with name 'remote' 'control',
 description "It has only one button.",
 has transparent;

Object -> "button"
 with name 'button',
 before [;
 Push: if (self has on) {
 give self ~on; "The distant hum stops.";
 }
 else {
 give self on; "You hear a distant humming sound.";
 }
],
 has ~on;

• The add_to_scope property. This property comprises either a list of one or more
additional objects, or a routine which makes one or more calls to AddToScope(object).
For example:

Object newSelfobj "yourself"
 with description "You don't much care for what you see.",
 number 0,
 add_to_scope hair,
 has animate concealed proper transparent;

Object hair "your hair"
 with name 'hair' 'head',
 before [;
 Examine,Pull,Rub,Search,Touch:
 "You scratch your head; dandruff showers.";
 default: "Huh?";
],
 has proper;

Note: the DM4 is confused on whether an add_to_scope routine should call
AddToScope() or PlaceInScope(); the consensus is to use AddToScope().

Looking for objects elsewhere. The second possibility is rather less common than the
first, but it's the best approach to one specific problem. The grammars for most verbs which
handle objects are similar to this example:

 Verb 'open' 'unwrap' 'uncover' 'undo'
 * noun -> Open
 * noun 'with' held -> Unlock;

The noun token matches any object in scope (usually, in the room); the held token matches
any object carried by the player. That makes sense: you can't expect to OPEN THE COFFIN
unless it's there in front of you. However, what if you want to ASK UNDERTAKER ABOUT
COFFIN? It seems a reasonable question, and one that the undertaker should be able to
answer, even though the object itself isn't currently visible. The standard grammar here is:

 Verb 'ask'
 * creature 'about' topic -> Ask;

but the topic token is matched by any text at all, leaving you with the messy task of parsing
it for meaningful content. An better approach is to let the Inform parser do the hard work for
you. You need four items:

1. A set of 'objects', not physically present in the game, whose only role is to define the

words you can ask about in their name properties:

More information in the FAQ
topic: How can I reconfigure
the Player Character (PC)?

More information in
the DM: §31 §32

http://www.firthworks.com/roger/informfaq/oo.html#9
http://www.firthworks.com/roger/informfaq/oo.html#9
http://www.inform-fiction.org/manual/html/s31.html
http://www.inform-fiction.org/manual/html/s32.html

 9 · Worldly Woes (advanced)

 129

 Object AskTopics "topics for ASK";
 Object -> t_coffin "coffin"
 with name 'coffin' 'box' 'casket';

 Object -> t_grave "grave"
 with name 'grave' 'hole';

 Object -> t_stone "gravestone"
 with name 'gravestone' 'stone' 'monument';
 etc...

2. A routine to look for those words:

 [AskTopicsScope;
 switch (scope_stage) {
 1: rfalse;
 2: ScopeWithin(AskTopics); rtrue;
 3: "At the moment, even the simplest questions are confusing.";
 }
];

3. A new grammar which calls that routine:

 Extend 'ask' replace
 * creature 'about' scope=AskTopicsScope -> Ask;

4. And lastly, an NPC life property to supply the answer which matches the 'object' parsed
into the second variable:

Object undertaker "undertaker"
 with ...
 life [;
 Ask: switch (second) {
 t_coffin: "~Best Brazilian mahogany -- it'll last a
 lifetime.~";
 t_grave: "~Six feet deep, and not an inch less.~";
 t_stone: "~We can offer you granite, slate or marble.~";
 ...
 default: "~I'm so sorry; I can't help you with that.~";
 }
],
 has animate;

The reason we're presenting this here is because of that scope=
token, which uses a routine -- written by you, but almost always
of the form shown -- to temporarily redefine the current scope.
ScopeWithin() is a library routine which places the contents of
the specified object in scope, and here it's used to bring the conversational topic objects into
scope, and so enable the conversation to refer to as many subjects as you care to define.

Checking on scope. An object sometimes needs to check for itself whether it's in scope.
Typically this is within a daemon or timer; for example, if the player removes a supporting
column, he may have two or three turns to leave the room before the ceiling falls in and -- if
he's still there -- kills him. Here are three simple tests:

• if (self in location) ... verifies that the object is in the player's current room;
• if (IndirectlyContains(real_location,self)) ... does the same thing, but also

allows for the object being inside a container, and for the room being dark;
• if (TestScope(self)) ... is usually the best approach, since it takes care of the full

range of scope testing (but be careful: an exploding bomb should still kill the player
even if it's out-of-scope within a closed paper bag).

For more information on
conversation with NPCs, see
Roger Firth's InFact pages

http://www.firthworks.com/roger/infact/convers1.html

9 · Worldly Woes (advanced)

 130

Remembering a lost object. Finally, an exploration of techniques for dealing with an out-
of-scope object whose previous presence the player might well recollect. Consider this
example:

 > DRINK WATER
 You drink the water, and it's all gone.

 > DRINK WATER
 You can't see any such thing.

True enough, and easy to program. But what if you're after this effect?

 > DRINK WATER
 You drink the water, and it's all gone.

 > DRINK WATER
 What water?

Here are some different ways of achieving this.

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink:
 move fake_water to parent(self); remove self;
 "You drink the water, and it's all gone.";
];

 Object fake_water "water"
 with name 'water' 'liquid',
 article "some",
 react_before [;
 if (self == noun or second) "What water?";
],
 has scenery;

These first four solutions all use some slight trickery in order to keep a fake object with the
name 'water' in scope, even after the real water has been consumed. That way, the
command DRINK WATER will continue to be accepted by the parser; it's the fake water's job
to react to all commands with the "What water?" message.

In this example, the first DRINK WATER command removes the real water object and
replaces it with a fake equivalent. The fake then rejects all subsequent commands to DRINK,
EXAMINE, or do anything at all with the missing water.

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink:
 give self scenery;
 "You drink the water, and it's all gone.";
],
 react_before [;
 if (self has scenery && self == noun or second)
 "What water?";
],
 has ~scenery;

This example is very similar, but rather than replacing one object by another, it uses the
scenery attribute to transform the real water into fake.

 9 · Worldly Woes (advanced)

 131

One advantage of this approach is that pronouns still work properly; for example, you can
use these three commands successfully, because IT still refers to the water after it's been
consumed:

 EXAMINE WATER
 DRINK IT
 DRINK IT

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink:
 remove self; MoveFloatingObjects();
 "You drink the water, and it's all gone.";
];

 Object fake_water "water"
 with name 'water' 'liquid',
 article "some",
 react_before [;
 if (self == noun or second) "What water?";
],
 found_in [;
 if (TestScope(water) == false) rtrue;
],
 has scenery;

The previous two solutions work only in a single location; move to another room, and your
quest for water reverts to the standard "You can't see any such thing.". Here's a way of
using the found_in property so that you'll obtain the specialized "What water?" response
anywhere.

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink:
 remove self;
 "You drink the water, and it's all gone.";
];

 Object fake_water "water"
 with name 'water' 'liquid',
 article "some",
 react_before [;
 if (self == noun or second) "What water?";
],
 has scenery;

 Object mySelfobj "(self object)"
 with short_name [; return L__M(##Miscellany, 18);],
 description [; return L__M(##Miscellany, 19);],
 before NULL, after NULL, life NULL, each_turn NULL,
 time_out NULL, describe NULL,
 capacity 100, parse_name 0,
 orders 0, number 0,
 add_to_scope [;
 if (parent(water) == nothing)
 AddToScope(fake_water);
],
 has concealed animate proper transparent;

9 · Worldly Woes (advanced)

 132

This example achieves the same thing by a different technique; it uses an add_to_scope
property on the player object, so that the fake water is brought into scope as the player
moves around.

Unfortunately, you can't just assign a new add_to_scope property value to selfobj,
because the standard Library object doesn't provide an initial value for you to overwrite.
Instead, you must define your own version of selfobj -- based on the Library object -- with
the addition of an appropriate add_to_scope property. Also, you must add this line to your
Initialise() routine:

 player = mySelfobj;

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink: remove self;
 "You drink the water, and it's all gone.";
];

 [ParseWater n;
 while (NextWord() == 'water' or 'liquid') n++;
 if (n == 0) return GPR_FAIL;
 wn--;
 return GPR_PREPOSITION;
];

 [WhatWaterSub; "What water?";];

 Extend 'drink'
 * ParseWater -> WhatWater;

To finish with, here are two quite different lines of attack. In this example we define a
'general parsing routine' (DM4 §31) specifically to look for 'water' and 'liquid', and we also
append a line to the DRINK verb's grammar. The effect is that, if DRINK WATER isn't
matched by a real water object, it'll still match this new grammar line, and thus trigger the
WhatWater action to produce the required message.

 Object -> water "water"
 with name 'water' 'liquid',
 article "some",
 description "Very cold and very wet ",
 before [;
 Drink:
 remove self;
 "You drink the water, and it's all gone.";
];

[ParserError error_type
 x;
 for (wn=1,x=0 : wn<=parse->1 : wn++)
 if (WordInProperty(parse-->(2*wn-1), water, name)) x++;
 if ((error_type == CANTSEE_PE && x) ||
 (error_type == ITGONE_PE && PronounValue('it') == water))
 "What water?";
 rfalse;
];

This example steps in at the last possible moment, just as the parser is about to report "You
can't see any such thing." and, if the parse error relates to (what is probably) the missing
water, displays our customized response instead.

 9 · Worldly Woes (advanced)

 133

What's the easiest way to shine light everywhere?

One of the first things you learn, when starting out to design an Inform
game, is that your rooms will be pitch dark unless a source of light is
available. That's what the light attribute does for you, and it's most
commonly applied to each room:

 Object hallway "Dingy hall"
 with description "Steps lead down into darkness.",
 e_to front_door,
 w_to kitchen,
 d_to cellar,
 has light;

 Object kitchen "Small kitchen"
 ...
 has light;

However, (with luck) you'll quickly realize that a Room class simplifies things a little:

 Class Room
 with description "A bare and featureless room.",
 has light;

 Room hallway "Dingy hall"
 with description "Steps lead down into darkness.",
 e_to front_door,
 w_to kitchen,
 d_to cellar;

 Room kitchen "Small kitchen"
 ...;

That approach is both easy and flexible: your rooms will now be illuminated unless you say
otherwise. If you don't need that flexibility -- if darkness isn't a factor anywhere in your
game -- then you can make things even simpler. Here are three ways:

Providing the sun. Use an object like this:

 Object with found_in [; rtrue;], has light scenery;

Lighting up the player. Add this line to Initialise():

 give player light;

Bending the rules. Change the library routine OffersLight():

 Replace OffersLight;

 [OffersLight obj; if (obj) rtrue; else rfalse;];

More information
in the DM: §19

More information in the FAQ topic:
What does class inheritance do for me?

http://www.inform-fiction.org/manual/html/s19.html
http://www.firthworks.com/roger/informfaq/oo.html#5

9 · Worldly Woes (advanced)

 134

Why is water so difficult to model?

Given how commonly they occur in real life, the implementation in a game
of water-like liquids is a remarkable challenge. TAKE is difficult (you need a
suitable container, and what happens to any existing contents?), as is
DROP (what happens to the spillage?). Worse, a liquid can be divided and combined
indefinitely, and mixed with other liquids. Or solids. If there's a bit of it, you could DRINK it;
if there's a lot of it, SWIM becomes a possibility; and so on.

There are a couple of excellent library extensions in the
Archive to deal with liquids, but for a game where a bucket
of water has only an insignificant walk-on role, you might
fancy something rather simpler. So here are a couple of
object classes to act as a starting point. You get support for
FILL and EMPTY, and for pouring the contents of one container into another. You don't get
support for specific quantities of liquid -- a container is either empty or full -- nor for mixing
liquids, nor for anything else beyond the basics. And even so, there's quite a lot of code.

First, the Water class can be used for the liquid object itself. It enables you
to create and delete instances of the class at run-time, redirects several
possible actions to the liquid's container, and includes an infinite property
to distinguish between finite (the contents of a bottle or glass) and infinite (a lake, a
fountain) amounts:

 Class Water(2)
 with name 'water',
 short_name "water",
 article "some",
 infinite false, ! is this an inexhaustible source of liquid?
 before [;
 Drink:
 "A small sip refreshes you.";
 Take:
 "[Use FILL and the name of a suitable container.]";
 Insert,Transfer:
 if (parent(self) ofclass Bucket)
 <<EmptyT (parent(self)) second>>;
 if (second ofclass Bucket)
 <<Fill second>>;
 "I'm not sure that's a suitable container.";
 Drop,Empty,EmptyT:
 if (parent(self) ofclass Bucket)
 <<(action) (parent(self)) second>>;
],
 react_before [;
 Fill:
 if (noun ofclass Bucket) rfalse;
 "I'm not sure that's a suitable container.";
];

The Water class is heavily inter-dependent on the Bucket class, which defines an object
capable of containing the liquid; it doesn't have to be a bucket -- a glass, jar, bottle or barrel
would all be appropriate. Most of the work is handling the actions of Fill, Empty and EmptyT
(EMPTY x INTO y) for Water objects, ensuring that Water isn't mixed with other objects:

More information
in the DM: §50

See Jim Fisher's ORliquid.h and
Emily Short's amazingly
comprehensive (and very large)
WaterElement.h in the Archive

More information
in the DM: §3.11

http://www.inform-fiction.org/manual/html/s50.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html
http://www.inform-fiction.org/manual/html/s3.html#s3_11

 9 · Worldly Woes (advanced)

 135

 Class Bucket
 with before [x y; x = child(self);
 Empty:
 if (~~x ofclass Water) rfalse; ! follow standard action
 Water.destroy(x);
 print_ret (The) x, " pours onto the ground and disappears.";
 EmptyT:
 if (~~x ofclass Water) rfalse; ! follow standard action
 if (second ofclass Bucket) {
 y = child(second);
 if (~~y) { ! second is empty
 move x to second;
 "You pour ", (the) x, " into ", (the) second, ".";
 }
 if (y ofclass Water)
 print_ret (The) second, " is already full of ",
 (name) y, ".";
 else
 print_ret (The) second, " has other stuff in it.";
 }
 else {
 if (second == d_obj) <<Empty self>>;
 "I'm not sure that's a suitable container.";
 }
 Fill:
 if (~~x) { ! is there a water source in scope?
 objectloop (x ofclass Water && x.infinite && TestScope(x)) {
 x = Water.create(); move x to self;
 "You fill ", (the) self, " with ", (name) x, ".";
 }
 rfalse; ! no water available
 }
 if (x ofclass Water)
 print_ret (The) self, " is already full of ", (name) x, ".";
 else
 print_ret (The) self, " has other stuff in it.";
 Receive:
 if (x ofclass Water)
 print_ret (The) self, " is already full of ", (name) x, ".";
],
 has container open;

If you FILL a Bucket from a source of Water, there are two Water objects
in the room. A reference to 'WATER' seems to favour the infinite source
rather than the finite amount in the Bucket, which feels the wrong way
round. So we can define a ChooseObjects() routine to rectify this:

 [ChooseObjects obj code;
 if (code == 2 && obj ofclass Water)
 if (obj.infinite) return 1; else return 2;
];

Finally, here are a couple of useful extensions to the standard grammar:

 Verb 'pour' = 'empty';

 [Wet; if (noun ofclass Water) rtrue; rfalse;];

 Extend 'fill'
 * noun 'with' noun=Wet -> Fill
 * noun 'at'/'from' noun -> EmptyT reverse;

More information
in the DM: §33

http://www.inform-fiction.org/manual/html/s33.html

9 · Worldly Woes (advanced)

 136

The nice thing about defining object classes, however complex, is that the actual objects
themselves are pretty simple. Here's a bubbling fountain, from which you can fill a jar with
water:

 Object -> fountain "fountain"
 with name 'little' 'stone' 'fountain' 'pool',
 description
 "Water gushes from the little stone fountain
 and collects in the pool beneath.",
 before [;
 EmptyT:
 if (second ofclass Bucket) <<Fill second>>;
 "I'm not sure that's a suitable container.";
],
 has static transparent;

 Water -> -> "water"
 with infinite true;

 Bucket -> "jar"
 with name 'jar' 'pot';

 Bucket -> "barrel"
 with name 'barrel' 'cask';

And this is what you get for your money:

 >LOOK

 A valley in the mountains
 The Alpine vista is glorious.

 You can see a fountain and a barrel (which is empty) here.

 >EXAMINE FOUNTAIN
 Water gushes from the little stone fountain and collects in the pool
 beneath.

 >FILL JAR
 You fill the jar with water.

 >INV
 You are carrying:
 a jar
 some water

 >POUR WATER INTO BARREL
 (the water into the barrel)
 You pour the water into the barrel.

 >LOOK

 A valley in the mountains
 The Alpine vista is glorious.

 You can see a fountain and a barrel (in which is some water) here.

 >EMPTY BARREL
 The water pours onto the ground and disappears.

 9 · Worldly Woes (advanced)

 137

How does everybody know where the north is?

Once in a while there comes a player or designer complaining that the use
of cardinal directions in a game seems awkward and absurd. Awkward,
because it doesn't read very elegantly in room descriptions to have a list
of available exits which mention "north, south and southwest" -- it may break the mood of
the narration, especially if you are indoors. Absurd, because games assume that players
have an innate and accurate sense of direction, a compass inside their brains, which lets
them assess that, for example, the banana lies to the northeast, even when they are
prisoners in an underground cave. Wouldn't it be more logical to use relative directions -- "to
your left", "ahead of you", and so on -- and be done with?

Many discussions arise from the "Compass versus Relative directions" debate. Not so long
ago, Mike Roberts, designer of the excellent Text Adventure Development System, decided
to make a TADS test game, Rat In Control, which allowed players to switch between both
systems; the idea was to see if the conventional Compass Directions system was in fact
clearer and easier to use, and if players would form confused perceptions of the map when
using relative directions. You may check the announcement and further discussion of the
experiment here.

Disregarding the question of use from a player's perspective, there are some design issues
which makes the implementation of relative directions a difficult task. Let's try to define the
problem and its ramifications.

Imagine our player standing in a square room, looking to the north. We need to describe the
new directions, so a start would be "ahead of you", "to your right", "to your left" and "behind
you". However, things begin to sound a bit more clumsy with diagonal directions: "diagonally
ahead of you and to your right", or "slightly to your left", or "over your right shoulder" or
(heaven forbid) "round to your left and a bit more". You can even complicate things further
by adding the third dimension: "above, diagonally ahead of you and to your right" (or
perhaps just "two o'clock high"), but let's presume for the sake of simplicity that your game
doesn't need those.

So our player is in a square room facing north, which, for the time being, has become "ahead
of you". When we use compass directions, our movement verbs echo the direction we want
to go: if we type EAST, the player moves in that direction and arrives at a new location; end
of the problem. With relative directions, however, you have to take in consideration which
way the player is facing, because if you type AHEAD or some such, it will get you to a
different place if you're facing to the north or if you're facing to the south. Two problems
arise from this:

• the player must be able to rotate, to turn around; we must implement new "turn to
the right" type actions, and we must make a decision: how many degrees will the
player turn for each action? With eight horizontal directions, 45 degrees might be
logical in order to allow the player to face whichever possible direction there is.
However, perhaps this is too complicated, and simple quarter turns would be
enough.

• If you want the PC to go LEFT, does he scuttle sideways like a crab or, more

logically, does he turn to face the new direction and then walk forward? The
immediate consequence would be that the player is now facing to a different
direction when he arrives at the new location, and what was "left" has become
"ahead". If you don't want to allow for this complication, you could perhaps suppose
that the PC travels to his new destination and then turns again to face to the north --
meaning that he does have a compass in his head after all -- but then you would
have to explain this behaviour in some way, or players might not understand what's
going on.

And then, of course, you still have the little problem of room descriptions. Consider the
following paragraph:

More information
in the DM: §9

http://www.inform-fiction.org/manual/html/s9.html
http://mirror.ifarchive.org/if-archive/games/tads/spatial.t3
http://www.google.com/groups?th=f07753ec2f847121

9 · Worldly Woes (advanced)

 138

 The Library
 Bookshelves cover all the walls in this magnificent room. There's
 an arch to your left leading into the living room, and double oak
 doors ahead of you connect with your private office.

So far, so good. But now, suppose that we enter our private office, which proves to be a
dead end, and then return to the library. Unless we always force the player to face to the
north (which is really a bit silly), we now find that the arch is "to the right" and the double
oak doors "behind you". So your descriptions need to implement some way of catering for
these variations.

The following code is a (simplified and crude) example which implements just four relative
directions (ahead, right, behind and left), without removing the existing compass directions.
You could easily extend it to cover diagonal directions; the system wouldn't change, but
you'd be acquiring the malady known as "combinatorial explosion".

 ! Four common properties to add to the new CompassDirection objects:

 Property ahead_to;
 Property right_to;
 Property back_to;
 Property left_to;

 Global position; ! in which direction is the PC looking?
 ! 0 = north; 1 = east; 2 = south; 3 = west;
 ! There are no diagonal directions in this example.

 Global op; ! Absolute position of a room or a fixed object
 ! in relation to the (adjacent) location where the PC is.
 ! It doesn't matter how the PC moves, the "office" (e.g.)
 ! is always to the north of the "library".

 ! We now need some new Compass Direction objects:

 CompassDirection ahead_obj "ahead" Compass
 with door_dir ahead_to, name 'straight' 'ahead' 'forward' 'f//' 'a//';

 CompassDirection right_obj "right" Compass
 with door_dir right_to, name 'right' 'r//';

 CompassDirection back_obj "behind" Compass
 with door_dir back_to, name 'back' 'backwards' 'behind' 'b//';

 CompassDirection left_obj "left" Compass
 with door_dir left_to, name 'left' 'le' 'lf' 'lft';

 ! The Room class implements the relative directions system.
 ! Caveat: you cannot use the s_to "can't go" syntax.
 ! You must use a 'before' property and trap Go actions.

 Array cdir --> n_obj e_obj s_obj w_obj;

 Class Room
 with description "Under Construction.",
 before [;
 Go:
 if (self provides n_to && noun == n_obj) position = 0;
 if (self provides e_to && noun == e_obj) position = 1;
 if (self provides s_to && noun == s_obj) position = 2;
 if (self provides w_to && noun == w_obj) position = 3;
],
 ahead_to [; <<Go (cdir-->(position))>>;],
 right_to [; <<Go (cdir-->((position+1)%4))>>;],
 back_to [; <<Go (cdir-->((position+2)%4))>>;],
 left_to [; <<Go (cdir-->((position+3)%4))>>;],
 has light;

 9 · Worldly Woes (advanced)

 139

 ! Define a printing rule for our changing descriptions:

 Array rdir --> "ahead of you" "to your right" "behind you" "to your left";

 [dir obj;
 if (location provides n_to && obj == location.n_to) op = 0;
 if (location provides e_to && obj == location.e_to) op = 1;
 if (location provides s_to && obj == location.s_to) op = 2;
 if (location provides w_to && obj == location.w_to) op = 3;

 if (position == 0 or 2) print (string) rdir-->((position+op)%4);
 if (position == 1 or 3) print (string) rdir-->((position+op+2)%4);
];

 ! In Initialise, we must define a starting value for the position variable:

 [Initialise;
 location = entrance;
 position = 0;
 ...
];

 ! And now some grammar:

 Array cdir --> "north" "east" "south" "west";

 [TurnRightSub;
 print "You make a quarter turn right. You are now facing to the ";
 position = (position + 1)%4;
 print_ret (string) cdir-->position, ".";
];

 [TurnAroundSub;
 print "You turn around. You are now facing to the ";
 position = (position + 2)%4;
 print_ret (string) cdir-->position, ".";
];

 [TurnLeftSub;
 print "You make a quarter turn left. You are now facing to the ";
 position = (position + 3)%4;
 print_ret (string) cdir-->position, ".";
];

 Extend 'go'
 * 'to' noun=ADirection -> Go;

 Extend 'turn' first
 * 'right' -> TurnRight
 * 'around' -> TurnAround
 * 'left' -> TurnLeft;

Now, every time you write a room description, all you need to do is use the new printing rule
when you describe the positions of adjacent rooms. Supposing there are two rooms named
living_room and office respectively, you could write:

 Room library "The Library"
 with description
 "Bookshelves cover all the walls in this magnificent room.
 There's an arch ", (dir) living_room, " leading into the
 living room, and double oak doors ", (dir) office, " connect
 with your private office.",
 ...

9 · Worldly Woes (advanced)

 140

As you see, the implementation of relative directions is no trivial task, and it's probable that
players will find it a bit confusing at run-time. So our advice is that you stick with the
conventional Compass directions, which are clean and straightforward, even if they seem a
bit awkward and absurd at times.

If you don't want to use the words "north", "south", etc, in your room descriptions, you may
add a little compass object to your game's UI which informs the player of every available exit
from the current room. This way, you won't need to clutter your descriptions with mood-
breaking lines explaining where the player can go to in practical terms, since there's a fixed
spot on the screen where this information can be found.

 10 · Inside Information (advanced)

 141

10 · Inside Information (advanced)

What's a Library entry point?

Inform provides around 20 opportunities for the game author to influence
or control the Library's behaviour. You can do this from outside -- without
having to change the standard header files -- because the Library provides
'hooks' on which, if you wish, you can hang suitable chunks of code. These hooks are
actually calls to routines with pre-defined names; if your game provides a routine of that
name, the Library calls it at the appropriate time. Your routine may either produce some
supplementary output (for example, DeathMessage() provides an opportunity to explain
how the player has 'died'), or return a value causing the Library to change its default
behaviour (for example, ChooseObjects() allows you to influence how multiple or
equivalent objects are selected).

Here's roughly how parserm.h invokes ChooseObjects() when deciding whether to include
object 'j' in an ALL:

 flag=1;
 if (action_to_be == ##Take or ##Remove && parent(j)==actor) flag=0;
 k=ChooseObjects(j,flag);
 if (k==1) flag=1; else { if (k==2) flag=0; }
 if (flag==1) { ! Decided to INCLUDE it
 ...
 } else { ! Decided to EXCLUDE it
 ...
 }

Now while there's no need to worry about the details of how that works, you will notice that
the Library makes a perfectly normal call to ChooseObjects(), without caring whether or
not you've actually provided such a routine. How can this work? normally, the compiler
complains bitterly if you call a routine which doesn't exist. The answer is: there will always
be a ChooseObjects() routine; if you don't provide one, the Library supplies a dummy
version instead. Right at the end of Grammar.h, you'll find the line:

 #Stub ChooseObjects 2;

which is a shorthand way of saying:

 #IfNDef ChooseObjects;
 [ChooseObjects a1 a2; rfalse;];
 #EndIf;

Two points are worth noting here: If you're providing an entry point routine, do so before the
#Include of Grammar.h. And, that rfalse is important: for those entry point routines which
return a value, false always triggers the Library's default behaviour.

Where are all those Library files used?

The Inform Library comprises nine header (.h) files; why so many, and where are they all
used? You already know that every game must #Include the three top-most files Parser.h,
VerbLib.h and Grammar.h; what is perhaps less familiar is the manner in which those three
files in turn #Include the rest of the Library. The diagram illustrates how this works:

More information
in the DM: §A5

More information
in the DM: §38

http://www.inform-fiction.org/manual/html/sa5.html
http://www.inform-fiction.org/manual/html/s38.html

10 · Inside Information (advanced)

 142

The file english.h is actually included into parserm.h by the directive
Include "language__", where language__ is a library variable (initialised to "english")
which you can change with a compiler switch like +language_name=french. Also, if you count
carefully, you'll notice that one file -- linklv.h -- isn't mentioned anywhere. That's because
it applies only when using Modules, which as we all know is A Bad Idea.

The highlighted code to the right gives an overview of how the game
runs (not that you need to know any of this other than from sheer
curiosity). Every Inform program is required to have a Main() routine,
but you don't write it yourself: the Library provides one in Parser.h. Main() simply invokes
the play property of the InformLibrary object, and it's here that everything happens.

The play property routine first sets up the game -- calls your Initialise() routine, moves
player to location, prints the game banner, and so on -- and then loops until deadflag is
non-zero. Each iteration of the loop represents one turn: parse a line typed by the player,
perform the appropriate action, and then carry out standard end-of-turn processing. Finally,
the player wins or dies, deadflag becomes non-zero, and the loop ends. The play() routine
prints an appropriate message, and exits back to Main(). That in turn exits, and the game is
over.

Why so many files? probably a combination of clean modularity, author flexibility and the
requirements of the module linking scheme. Why are parse_input(), play(),
end_turn_sequence() and begin_action() implemented as object properties rather than
standalone routines? I haven't a clue.

Can I use Inform without the standard Library files?

Inform is actually a fairly general-purpose programming language, albeit with a few annoying
limitations (for example, the Z-machine's Input/Output capabilities are somewhat limited,
though Glulx is better in this respect). There's no reason why you shouldn't use the language
for purposes other than writing Interactive Fiction and, if you do so, there's no particular
need to #Include the library files Parser.h, VerbLib.h and Grammar.h. For example, this is
a perfectly acceptable Inform program which runs on the Z-machine:

More information in
the DM: §1.2 §4

http://www.firthworks.com/roger/informfaq/pp.html#10
http://www.firthworks.com/roger/informfaq/pp.html#7
http://www.inform-fiction.org/manual/html/s1.html#s1_2
http://www.inform-fiction.org/manual/html/s4.html

 10 · Inside Information (advanced)

 143

 [Main;
 print "Hello world^";
];

That's pretty unexciting. Here's a slightly more useful Z-machine tool
which scrambles text using ROT13: this involves replacing each letter
with one that appears 13 characters later in the alphabet. (Note, by the
way, that the Z-machine automatically converts all text to lowercase
before storing it in the input buffer.)

 ! ROT13 for the Z-machine

 Constant INPUTBUFFER_SIZE 100;
 Array inputBuffer -> 2 ! Max size, actual size,
 + INPUTBUFFER_SIZE ! then the characters,
 + 1; ! then a spare in case of overflow.

 [Main i c;
 inputBuffer->0 = INPUTBUFFER_SIZE;
 while (true) {
 print "^^Enter some text> ";
 read inputBuffer 0;
 if (inputBuffer->1 == 0) quit;
 for (i=0 : i<inputBuffer->1 : i++) {
 c = inputBuffer->(i+2);
 switch (c) {
 'A' to 'M', 'a' to 'm': print (char) c + 13;
 'N' to 'Z', 'n' to 'z': print (char) c - 13;
 default: print (char) c;
 }
 }
 }
];

Using Glulx, things are slightly more complex. For a start, the "Hello world" program won't
quite run on the Glulx virtual machine which, unlike the Z-machine, doesn't automatically
open a window in which to display the program's output. To
make that happen, you need to include a few more lines:

 [Main w;
 @setiosys 2 0; ! Select the Glk I/O system.
 w = glk($0023, 0, 0, 0, 3, 0); ! Open a text-buffer window,
 glk($002F, w); ! and select it as the current output stream.

 print "Hello world^";
];

The Z-machine has its Input/Output mechanisms built into the interpreter. Glulx is more
generalised: it can use any suitable I/O system, though in practice that usually means
Andrew Plotkin's Glk. So, @setiosys 2 0; specifies the use of Glk, the glk($0023...) call
uses glk_window_open() to return the identifier of a newly-created window, and then the
glk($002F...) call uses glk_set_window() to direct I/O to that window. Not that you need to
worry about how it works: just copy those initialisation statements into your own program.

There's another problem to be overcome before our ROT13 tool works on Glulx: we can't use
the Inform read statement. Instead, we need more glk() calls to fetch the line of input text:

 ! ROT13 for the Glulx VM

 Constant INPUTBUFFER_SIZE 100;
 Array inputBuffer -> INPUTBUFFER_SIZE;

 Array gg_event --> 4;

More information in
the DM: §1.2 §2.5

More information on Andrew
Plotkin's Glulx and Glk pages

http://www.inform-fiction.org/manual/html/s1.html#s1_2
http://www.inform-fiction.org/manual/html/s2.html#s2_5
http://www.eblong.com/zarf/glulx/
http://www.eblong.com/zarf/glk/

10 · Inside Information (advanced)

 144

 [Main w i c;
 @setiosys 2 0; ! Select the Glk I/O system.
 w = glk($0023, 0, 0, 0, 3, 0); ! Open a text-buffer window,
 glk($002F, w); ! and select it as the current output stream.

 while (true) {
 print "^^Enter some text> ";
 glk($00D0, w, inputBuffer, INPUTBUFFER_SIZE, 0);
 while (true) { ! Wait for RETURN to be pressed.
 glk($00C0, gg_event); ! LineInput is the only interesting event.
 if (gg_event-->0 == 3 && gg_event-->1 == w) break;
 }
 if (gg_event-->2 == 0) quit;
 for (i=0 : i<gg_event-->2 : i++) {
 c = inputBuffer->i;
 switch (c) {
 'A' to 'M', 'a' to 'm': print (char) c + 13;
 'N' to 'Z', 'n' to 'z': print (char) c - 13;
 default: print (char) c;
 }
 }
 }

];

Here, the glk($00D0...) call uses glk_request_line_event() to request a line of text from the
window, and then the glk($00C0...) call uses glk_select() to detect that the text has been
typed. Again, don't get too hung up on the mechanics. In fact, if you #Include infglk.h,
you can make things a little more readable, by using sensible names rather than mysterious
numbers:

 ! ROT13 for the Glulx VM

 Include "infglk";

 Constant INPUTBUFFER_SIZE 100;
 Array inputBuffer -> INPUTBUFFER_SIZE;

 Array gg_event --> 4;

 [Main w i c;
 @setiosys 2 0; ! Select the Glk I/O system.
 w = glk_window_open(0, 0, 0, wintype_TextBuffer, 0);
 ! Open a text-buffer window,
 glk_set_window(w); ! and select it as the current output stream.

 while (true) {
 print "^^Enter some text> ";
 glk_request_line_event(w, inputBuffer, INPUTBUFFER_SIZE, 0);
 while (true) { ! Wait for RETURN to be pressed.
 glk_select(gg_event); ! LineInput is the only interesting event.
 if (gg_event-->0 == evtype_LineInput && gg_event-->1 == w) break;
 }
 if (gg_event-->2 == 0) quit;
 for (i=0 : i<gg_event-->2 : i++) {
 c = inputBuffer->i;
 switch (c) {
 'A' to 'M', 'a' to 'm': print (char) c + 13;
 'N' to 'Z', 'n' to 'z': print (char) c - 13;
 default: print (char) c;
 }
 }
 }

];

 10 · Inside Information (advanced)

 145

What's all this stuff about message-passing?

Inform games are constructed from four fundamental building blocks:
Objects, Classes, Routines and Strings; other than primitive structures
like variables and arrays, all of the components of a compiled game fit
into one of these four categories. The most important category is the Object, and indeed it's
the InformLibrary object, along with its more outgoing sister InformParser, which
actually makes the game run.

How does it do that? Largely, by invoking the actionSub() associated with the player's
current action, and by sending one-word messages to other objects -- the one(s) directly
involved in that action, and others in the vicinity. The messages are the mechanism by which
those objects (a) find out what's about to happen, and (b) have an opportunity to influence
events. You can use the MESSAGES ON debugging command to watch them being sent.

Every message receives a reply; here's the syntax for sending a message and capturing the
response:

 x = obj.message(p1,p2,...);

in which obj is the object to which the message is sent, message is the actual message, and
p1 p2 etc are optional parameters associated with the message. The reply is placed in
variable x. For example, a command like DROP THE BLUE BALL is first parsed to give
action=Drop and noun=blueball, and then the -- somewhat simplified -- flow of execution is:

 if (noun.before() == false) {
 move noun to parent(player); ! These three statements
 if (noun.after() == false) ! are the essence of
 print "Dropped.^"; ! the DropSub routine.
 }

The two messages involved in that action are highlighted; they look familar, don't they? You
know them better in the guise of the before and after properties, and indeed that's exactly
what they are: the property names possessed by an object are the messages which the
object is prepared to accept, and the values of those properties determine what replies
those messages will receive. You can increase the set of messages to which an object will
respond simply by defining appropriate properties matching those message names.

You can also send messages to Classes, Routines and Strings, but here the rules a slightly
different: the set of acceptable messages is pre-defined and can't be increased. This is a list
of each possible message, the effect of sending it, and the reply that it will generate.

This message... ... has this effect... ... and returns this value

obj.prop()
(when the value of prop is a
routine)

Sets self to obj, sender to the sending
object (often InformLibrary), and
invokes the routine.

The value returned by the
routine.

obj.prop()
(when the value of prop is a
string)

Outputs the string, followed by a
newline.

true

obj.prop()
(when the value of prop is
false, nothing, zero or
unspecified)

None. false

obj.prop()
(when prop is a common
property not defined by obj)

None. The default value of prop.

More information in
the DM: §3.9 §3.12

http://www.inform-fiction.org/manual/html/s3.html#s3_9
http://www.inform-fiction.org/manual/html/s3.html#s3_12

10 · Inside Information (advanced)

 146

obj.prop()
(when the value of prop is a
small number)

None. The value of prop. Because
'small' is ill-defined, this usage
requires care; a safer technique
is simply x=obj.prop;

obj.prop()
(when the value of prop is
a large or negative number)

Usually causes a run-time error.

obj.class::prop()
(when the value of prop is
any of the above)

Provided that object obj is of class
class, sends the message to the prop
property of the class, rather than to
the (inherited or over-ridden) prop
property of the object.

The value from that
same class property.

class.remaining() None. The number of pre-defined
object instances of class which
are not currently active.

class.create()

or

class.create(p1,p2,p3)

Creates an object obj of this class
(actually, activates a pre-defined
instance) with a parent of nothing.
If obj has inherited a create
property routine from class, sends
a further message obj.create() or
obj.create(p1,p2,p3).

obj, or nothing if no more
instances can be activated.

class.recreate(obj)

or

class.recreate(obj,p1,p2,p3)

Re-initialises obj to its state at creation.
If obj has inherited a create property
routine from class, sends a further
message obj.create() or
obj.create(p1,p2,p3).

false

class.destroy(obj) Destroys an object of this class actually,
de-activates a pre-defined instance). If
obj has inherited a destroy property
routine from class, sends a further
message obj.destroy().

false

class.copy(obj,source_obj) Sets the property and attribute values
of obj equal to those of source_obj.
Both objects must be members of class.

false

routine.call(p1,p2,...) Invokes the routine;
essentially equivalent
to: routine(p1,p2,...)

The value returned by routine.

string.print() Outputs the string, followed by a
newline; equivalent to:
print_ret "string"

true

string.print_to_array(array) Writes the number of characters in
the string into word array-->0, and
the individual string characters into
bytes array->2, array->3, array->4,
etc; equivalent to:
 @input_stream 3 array;
 print "string";
 @input_stream -3;

The number of characters in
string.

 10 · Inside Information (advanced)

 147

What actually happens at the start and end of each turn?

Start: The parse_input property of the InformParser object is responsible for:

1. displaying the prompt, by calling L__M(##Prompt),
2. running the optional AfterPrompt entry point routine,
3. refreshing the status line, by calling DrawStatusLine(),
4. reading the player's typed input,
5. dealing with an AGAIN, OOPS or UNDO,
6. parsing the player's input.

End: The end_turn_sequence property of the InformLibrary object is responsible for:

1. adjusting the turns and the_time variables,
2. running all active daemons and timers,
3. running any each_turn property for the location, and then for each object in scope,
4. running the optional TimePasses entry point routine,
5. checking whether the location has light,

giving the moved attribute, and optionally awarding scores, to any objects which the player
has just picked up.

What's the difference between a Daemon and a Timer?

Not a great deal: each is a routine, defined as an object's embedded property routine, which
has no effect until you explicitly set it running. The difference lies in what happens next: a
daemon then runs a daemon() routine automatically at the end of each turn (until you stop
it or the game finishes); a timer does nothing for a specified number of turns (stored in
time_left), and then runs a time_out() routine once only. To illustrate the distinction,
consider these two simple examples. The blue box defines a daemon which makes the box
'tick' for as long as it's switched on, while the red box defines a timer which makes the box
explode without notice three turns after being switched on.

 Object -> "blue box"
 with name 'blue' 'box',
 after [;
 SwitchOn: StartDaemon(self);
 SwitchOff: StopDaemon(self);
],
 daemon [;
 if (IndirectlyContains(location,self))
 "^An ominous ticking noise is coming from the box.";
],
 has switchable ~on;

 Object -> "red box"
 with name 'red' 'box',
 after [;
 SwitchOn: StartTimer(self,3);
 SwitchOff: StopTimer(self);
],
 time_out [;
 if (IndirectlyContains(location,self))
 print "^The box explodes into a zillion fragments.^";
 remove self;
],
 time_left 0,
 has switchable ~on;

More information
in the DM: §22

More information
in the DM: §20

More information
in the DM: §20

http://www.inform-fiction.org/manual/html/s22.html
http://www.firthworks.com/roger/informfaq/aa.html#8
http://www.inform-fiction.org/manual/html/s20.html
http://www.firthworks.com/roger/informfaq/aa.html#11
http://www.firthworks.com/roger/informfaq/aa.html#8
http://www.inform-fiction.org/manual/html/s20.html

10 · Inside Information (advanced)

 148

The blue daemon runs once each turn from the turn where you call StartDaemon() until the
turn where you call StopDaemon(); the red timer waits three turns after you call
StartTimer(), and then runs explosively... unless the player switches off the red box in
time. To allow for the player switching on a box and then wandering away, both daemon and
timer print their output only if they’re in the same room as the player.

In fact, because a daemon runs at the end of every turn, you can make it do the work of a
timer as well. Here the blue and red boxes have been combined:

 Object -> "purple box"
 with name 'purple' 'box',
 after [;
 SwitchOn: self.time_left = 3; StartDaemon(self);
 SwitchOff: StopDaemon(self);
],
 daemon [;
 if (self.time_left > 0) {
 (self.time_left)--;
 if (IndirectlyContains(location,self))
 "^An ominous ticking noise is coming from the box.";
 }
 else {
 if (IndirectlyContains(location,self))
 print "^The box explodes into a zillion fragments.^";
 remove self;
 }
],
 time_left 0,
 has switchable ~on;

In a complicated game many daemons can be active at the same time, and you may then
encounter problems with the order in which they run (which is not under your direct control);
this is most evident with daemons which are frequently stopped and started. For example,
suppose that one daemon causes a nasty dwarf to roam though the rooms in your game,
while another causes the player’s sword to glow when evil is nearby. You really need to
ensure that the 'dwarf' daemon runs first, so that the 'sword' daemon can immediately react
if the dwarf moves into the player’s location. There are two standard techniques for
controlling the order in which daemons run. One method is to foresake the Library's standard
StartDaemon() and StopDaemon() routines, and instead run continuously a single
'superdaemon' which in turn calls the real daemons, in the desired order, if a suitable
property (or attribute) is set. For example, to ensure that three daemons run, if at all, in the
order X-Y-Z, you could write:

 [Initialise;
 StartDaemon(superdaemon);
 ...
];

 Object superdaemon
 with daemon [;
 if (objX.daemon_is_active) objX.daemon();
 if (objY.daemon_is_active) objY.daemon();
 if (objZ.daemon_is_active) objZ.daemon();
];

 Object objX
 with daemon [; ...],
 daemon_is_active false;

 Object objY
 with daemon [; ...],
 daemon_is_active true;

 Object objZ
 with daemon [; ...],
 daemon_is_active true;

 10 · Inside Information (advanced)

 149

In this example, you’d code the assignment objX.daemon_is_active = true; instead of the
routine call StartDaemon(objX); and objX.daemon_is_active = false; instead of
StopDaemon(objX);.

The other approach is to use Andrew Plotkin's daemons.h from the Archive, which enables
you to assign priority levels to your daemons (and timers). Higher priorities always run
before lower ones, so you could then write:

 Object objX
 with daemon [; ...],
 daemon_priority 50;

 Object objY
 with daemon [; ...],
 daemon_priority 30;

 Object objZ
 with daemon [; ...],
 daemon_priority 10;

No superdaemon is needed, and this time the standard StartDaemon() and
StopDaemon() routines can be used as normal.

If you're not concerned about daemon/timer sequence, you can ignore both of these
complications and just follow the basic procedures. Otherwise, which one you adopt is down
to you: the superdaemon approach avoids the need to patch Library routines, but doesn't
control timers (which run in unspecified order, always after the daemons). The priority
system controls both daemons and timers, but doesn't allow one daemon/timer to start
another (though stopping isn't a problem).

What's the difference between a Daemon and an each_turn
property?

Again, each is a routine, defined as an object's embedded property routine. A daemon
property needs to be explicitly started, whereupon it runs at the end of each turn until
stopped. An each_turn property doesn't need to be started; it is automatically run by the
parser, but only at the end of those turns when the associated object is in scope.

Typically, use a daemon to control a process which continues regardless of whether the
player is there to watch it, or not (for example, the exploding box). Use an each_turn to
control a process which might as well be suspended if there's no audience (for example,
telling the player about the sleeping giant who grunts and snores in the corner of the cave).

Why don't my daemons run at the start of a game?

One fairly frequent use for a daemon or each_turn property is to add atmospheric
information. For example, consider this specialised Room class:

 Class Coastal
 with each_turn "^The sound and smell of the sea is never far away.",
 has light;

which simply prints the string at the end of the description for each Coastal room. Well,
nearly always; this doesn't happen at the very start of a game:

 On the beach
 An interactive Shute story.
 Release 1 / Serial number 040112 / Inform v6.30 Library 6/11 S

http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXcontributions.html

10 · Inside Information (advanced)

 150

 By the sea
 You stand on a small dune overlooking an ocean inlet, watching the waves
 break gently on the sandy shore. A path leads inland to the east.

 >

Since the game has just displayed the description of a Coastal room, you might expect to see
each_turn adding its small contribution. The reason that you don't see it is because timers,
daemons and each_turn properties are triggered only at the end of a turn, just after turns
and the_time have been incremented (see the topic above). The first turn doesn't end until
the player types something and presses Return.

Although this library behaviour is logical, it can sometimes be a nuisance, so here's how to
work round it: by defining a LookRoutine() entry point. A LookRoutine() is called by the
library at the end of every Look action, including the one which prints the very first
description. So, by detecting that situation -- that it's the start of a game -- you can yourself
activate timers and daemons, each_turn properties or both. Here's the code to run just the
current location's each_turn property, which is all that we need to crack the problem
illustrated above:

 [LookRoutine;
 if (turns == 1 && verb_word == 0)
 location.each_turn();
];

(The check on verb_word catches the player's first command being another LOOK.) If you
want to run all appropriate each_turns, or trigger the timers and daemons, then it's slightly
trickier; you need to copy a block of code from InformLibrary.end_turn_sequence,
defined two-thirds of the way through parserm.h:

 [LookRoutine;
 if (turns == 1 && verb_word == 0) {
 ! run all timers and daemons
 for (i=0 : i<active_timers : i++) {
 if (deadflag) return;
 j = the_timers-->i;
 if (j ~= 0) {
 if (j & WORD_HIGHBIT) RunRoutines(j&~WORD_HIGHBIT, daemon);
 else {
 if (j.time_left == 0) {
 StopTimer(j);
 RunRoutines(j, time_out);
 }
 else
 j.time_left = j.time_left-1;
 }
 }
 }
 ! run each_turn for all in-scope objects
 scope_reason = EACH_TURN_REASON; verb_word = 0;
 DoScopeAction(location);
 SearchScope(ScopeCeiling(player), player, 0);
 scope_reason = PARSING_REASON;
 }
];

Fortunately, version 6/11 of the Library makes this much simpler:

 [LookRoutine;
 if (turns == START_MOVE && verb_word == 0) {
 RunTimersAndDaemons();
 RunEachTurnProperties();
 }
];

http://www.firthworks.com/roger/informfaq/#3

 10 · Inside Information (advanced)

 151

How do I compile a game as Version 3?

Occasionally, the only interpreter available for your computer doesn't support Z-code higher
than Version 3 (standard). To compile for this, use:

• the 6.15 Compiler from ...i--/c--/inform6/executables with the -v3 switch, and
• the 6/2 Library from ...i--/c--/inform6/library/old

Can I combine a game and an interpreter in a single file?

Very occasionally, it's convenient to distribute a single ready-to-run package containing both
a Z-code game file and a suitable interpreter. I know of a couple of tools which do just this:

• John Holder's Jzip interpreter includes the JZEXE bundling tool (PC and UNIX)
• L Ross Raszewski has a more generalized utility called BundleMonkey (PC only)

Try it: here's my tiny (50KB) Cloak of Darkness example, in the form of a Jzip bundle
(155KB), a Monkey bundle with WinFrotz (275KB), and a plain WinZip archive with WinFrotz
(95KB).

Could you explain how character sets are handled?

The Z-machine's character handling is one of
those topics which is simple until you start
thinking about it, whereupon it takes a turn for
the trickier (or maybe it's just me). Although most
of the necessary information is available, it's
scattered across several locations; this is an
attempt to pull together the basics in one place. Bear in mind that most of what follows is
specific to the Z-machine; Glulx handles characters quite differently (and currently doesn't
offer any support for extended character sets). We'll set the scene with a trip down memory
lane.

Character encoding

Historically, most computers have stored arbitrary character sequences -- 'strings' -- with
one character per byte of storage. An eight-bit byte supports 256 different character codes,
more than enough for the letters, digits, punctuation marks and control codes which were
common currency among the English-speaking fathers of modern-day computing. Fairly early
on, the obvious advantages of standardisation resulted in the American Standard Code for
Information Interchange (ASCII), defined in 1968 as ANSI X3.4, and later adopted as
ISO 646. This encoding allocated characters in a reasonably logical manner to the first 128
possible values (hex $00...$7F) -- so that for example $21 is an exclamation mark, $31 is
the digit '1', $41 is the letter 'A' and $61 is the letter 'a' -- and is still almost universally
used today (only IBM's EBCDIC, oriented towards mainframe punched cards, survives as an
alternative).

ASCII provides exactly 26 letter forms in upper and lower case, sufficient only to encode text
in English, Hawaiian, Latin and Swahili. As the need to handle other languages grew, a wide
and incompatible range of alternative allocations were devised for the infrequently-used
standard characters '#$@[\]^`{|}~', and for the remaining 128 values (hex $80...$FF)
which ASCII didn't specify.

Around the mid-1980s, in an attempt to escape total chaos, ISO 8859 defined a series of
nine ways of encoding all 256 byte values. Values $00...$7F (the ASCII encoding) and
$80…$9F (additional control codes) are identical in each of the nine encodings; the
differences lie in the 96 characters with values $A0...$FF. For example, ISO 8859-1 allocates
those values to characters commonly used in Western European text, ISO 8859-4 is
appropriate for North European text, ISO 8859-7 is for Greek text, and so on.

More information in:
the DM (§1.11, §36 and Table 2)
the Technical Manual (§8.3 and §12.3)
the Z-Machine Standards 1.0 document (§3)
the FAQ topic on Writing a French game

http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6Xexecutables.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6XlibraryXold.html
http://jzip.sourceforge.net/
http://justice.loyola.edu/~lraszews/if/
http://www.firthworks.com/roger/downloads/RunMe1.exe
http://www.firthworks.com/roger/downloads/RunMe2.exe
http://www.firthworks.com/roger/downloads/RunMe3.zip
http://www.inform-fiction.org/manual/html/contents.html
http://www.inform-fiction.org/source/tm/
http://www.inform-fiction.org/zmachine/standards/z1point0/
http://www.firthworks.com/roger/informfaq/pp.html#10

10 · Inside Information (advanced)

 152

Although ISO 8859 was a step in the right direction, it still left
an awful lot of languages out in the cold; basically, it just isn't
possible to squeeze all of those incompatible character sets into
an eight-bit encoding scheme. As so, in 1991 we get to
ISO 10646 -- Unicode -- which uses a sixteen-bit encoding (with
a twenty-bit extension zone for when that runs out). Sixteen
bits support 65,536 different character codes, of which roughly 50,000 have currently been
allocated. Conveniently, the first 256 Unicode characters are the same as ISO 8859-1, so
that $0041 and $0061 are still 'A' and 'a', while $00C1 and $00E1 remain consistently 'Á'
and 'á'.

TECHNICAL NOTE: The rest of this page assumes that you're using version 6.30 (or higher) of the
Inform compiler. There were significant problems with character set handling in earlier versions of
the compiler, and I strongly advise you to upgrade before experimenting with these techniques.

The ZSCII character set

Character strings in the Z-machine use the ZSCII encoding ('Z', unsurprisingly, stands for
'Zork'). ZSCII is an eight-bit character set, leading to a repertoire of 256 character codes.

TECHNICAL NOTE: The Z-Machine Standard 1.1 Proposal includes a mechanism to extend this,
offering direct access to Unicode strings.

In the ZSCII character set,
some of the 256 values are
reserved for control
purposes and others are
unused; these values are
shown in grey. The values in
the range 32...126 -- shown
in white -- are standard
encodings which cannot be
changed (and are the same
as the ASCII / ISO 8859 /
Unicode characters in that
range). The values in the
range 155...251 -- shown in
yellow -- are 'extra
characters' which you can
allocate. There are two ways
of populating this ZSCII
range with characters of
your choice:

• using the Cn
compiler switch;

• using the
Zcharacter
directive.

Allocating extra characters using the C switch

At compile-time, you can choose to populate the yellow range with characters taken from
one of the nine ISO 8859 series. You can set the switch either on the command line (-Cn) or
as a special comment at the very start of your source file (!% -Cn).

More information can be
found in the excellent sites of
Roman Czyborra (offline?)
and Alan Wood, and at
unicode.org

http://www.czyborra.com/
http://www.alanwood.net/unicode/
http://www.unicode.org/
http://www.jczorkmid.net/~jpenney/

 10 · Inside Information (advanced)

 153

If you specify C0 or C1, or if you omit the C switch altogether, then the compiler takes
letters and symbols from ISO 8859-1. Not all characters are taken, and their ZSCII order is
not the same as in ISO 8859-1. The result is Infocom's version of ZSCII, appropriate for
Western European games: English, French, German, Spanish, Swedish, etc. This is what
happens by default.

If you specify C2, the compiler takes all of the letter characters, but not in order, from
ISO 8859-2. The result is a version of ZSCII appropriate for Eastern European games:
Croatian, Hungarian, Polish, etc.

If you specify C3, the compiler takes all of the letter characters, in order, from ISO 8859-3.
The result is a version of ZSCII appropriate for Southern European games: Maltese, also
Esperanto.

10 · Inside Information (advanced)

 154

If you specify C4, the compiler takes all of the letter characters, in order, from ISO 8859-4.
The result is a version of ZSCII appropriate for Northern European games: Estonian, Latvian,
Lithuanian, etc.

If you specify C5, the compiler takes all of the letter characters, in order, from ISO 8859-5.
The result is a version of ZSCII appropriate for Cyrillic games: Bulgarian, Russian, Serbian,
etc.

If you specify C6, the compiler takes all of the letter characters, in order, from ISO 8859-6.
The result is a version of ZSCII appropriate for Arabic games.

 10 · Inside Information (advanced)

 155

If you specify C7, the compiler takes all of the letter characters, in order, from ISO 8859-7.
The result is a version of ZSCII appropriate for Greek games.

If you specify C8, the compiler takes all of the letter characters, in order, from ISO 8859-8.
The result is a version of ZSCII appropriate for Hebrew games.

If you specify C9, the compiler takes all of the letter characters, in order, from ISO 8859-9.
The result is a version of ZSCII appropriate for Turkish games.

Note that in all nine cases, some of the yellow range remains free. You can allocate
additional characters here, as explained next.

10 · Inside Information (advanced)

 156

Allocating extra characters using the Zcharacter directive

Having first populated the yellow range with a selection of ISO 8859 characters, you can
then choose either to supplement those characters with others of your own choosing, or to
replace them completely by up to 96 characters which you specify within the source file.

For example, you could start with the default allocation, and then add the three characters
'¢°±', by using this Zcharacter directive at the very start of your source file:

 Zcharacter table + '@{00A2}' '@{00B0}' '@{00B1}';

Alternatively, you could replace the initial allocation by just those three characters, using this
(very similar) Zcharacter directive:

 Zcharacter table '@{00A2}' '@{00B0}' '@{00B1}';

Both these Zcharacter directives expect a list of character values, each given in single
quotes. The construct @{00A2} specifies a Unicode character value in hexadecimal -- 00A2
is the value for the cent sign '¢', 00B0 is the degree sign '°', and 00B1 is the plus-minus sign
'±'.

 10 · Inside Information (advanced)

 157

TECHNICAL NOTE: Every Z-code interpreter requires a table to convert ZSCII values back into
printable Unicode characters. A default table -- matching the default ZSCII character set -- is built
into the interpreter. However, if you supply a switch C2...C9, or if you use either of these
Zcharacter directives, then the default table becomes inadequate, and the compiler must include a
replacement table within the game file. This is the 'Unicode translation table', whose address is
given in the Z-machine Header Extension area (whose address is itself given in the game's header
at address HDR_EXTENSION-->0). You can display the table by including Roger Firth's dump.h
library extension, and typing DUMP UCODE.

Just for completeness, here are Zcharacter directives which set up tables equivalent to
those created by the switches C1-C9:

 Zcharacter table ! C0/C1 - Latin 1 (West European)

 '@{00E4}' '@{00F6}' '@{00FC}' '@{00C4}' '@{00D6}' '@{00DC}' '@{00DF}' '@{00BB}'
 '@{00AB}' '@{00EB}' '@{00EF}' '@{00FF}' '@{00CB}' '@{00CF}' '@{00E1}' '@{00E9}'
 '@{00ED}' '@{00F3}' '@{00FA}' '@{00FD}' '@{00C1}' '@{00C9}' '@{00CD}' '@{00D3}'
 '@{00DA}' '@{00DD}' '@{00E0}' '@{00E8}' '@{00EC}' '@{00F2}' '@{00F9}' '@{00C0}'
 '@{00C8}' '@{00CC}' '@{00D2}' '@{00D9}' '@{00E2}' '@{00EA}' '@{00EE}' '@{00F4}'
 '@{00FB}' '@{00C2}' '@{00CA}' '@{00CE}' '@{00D4}' '@{00DB}' '@{00E5}' '@{00C5}'
 '@{00F8}' '@{00D8}' '@{00E3}' '@{00F1}' '@{00F5}' '@{00C3}' '@{00D1}' '@{00D5}'
 '@{00E6}' '@{00C6}' '@{00E7}' '@{00C7}' '@{00FE}' '@{00F0}' '@{00DE}' '@{00D0}'
 '@{00A3}' '@{0153}' '@{0152}' '@{00A1}' '@{00BF}';

 Zcharacter table ! C2 - Latin 2 (East European)

 '@{0104}' '@{0141}' '@{013D}' '@{015A}' '@{0160}' '@{015E}' '@{0164}' '@{0179}'
 '@{017D}' '@{017B}' '@{0154}' '@{00C1}' '@{00C2}' '@{0102}' '@{00C4}' '@{0139}'
 '@{0106}' '@{00C7}' '@{010C}' '@{00C9}' '@{0118}' '@{00CB}' '@{011A}' '@{00CD}'
 '@{00CE}' '@{010E}' '@{0110}' '@{0143}' '@{0147}' '@{00D3}' '@{00D4}' '@{0150}'
 '@{00D6}' '@{0158}' '@{016E}' '@{00DA}' '@{0170}' '@{00DC}' '@{00DD}' '@{0162}'
 '@{0105}' '@{0142}' '@{013E}' '@{015B}' '@{0161}' '@{015F}' '@{0165}' '@{017A}'
 '@{017E}' '@{017C}' '@{00DF}' '@{0155}' '@{00E1}' '@{00E2}' '@{0103}' '@{00E4}'
 '@{013A}' '@{0107}' '@{00E7}' '@{010D}' '@{00E9}' '@{0119}' '@{00EB}' '@{011B}'
 '@{00ED}' '@{00EE}' '@{010F}' '@{0111}' '@{0144}' '@{0148}' '@{00F3}' '@{00F4}'
 '@{0151}' '@{00F6}' '@{0159}' '@{016F}' '@{00FA}' '@{0171}' '@{00FC}' '@{00FD}'
 '@{0163}';

10 · Inside Information (advanced)

 158

 Zcharacter table ! C3 - Latin 3 (South European)

 '@{0126}' '@{0124}' '@{0130}' '@{015E}' '@{011E}' '@{0134}' '@{017B}' '@{0127}'
 '@{0125}' '@{0131}' '@{015F}' '@{011F}' '@{0135}' '@{017C}' '@{00C0}' '@{00C1}'
 '@{00C2}' '@{00C4}' '@{010A}' '@{0108}' '@{00C7}' '@{00C8}' '@{00C9}' '@{00CA}'
 '@{00CB}' '@{00CC}' '@{00CD}' '@{00CE}' '@{00CF}' '@{00D1}' '@{00D2}' '@{00D3}'
 '@{00D4}' '@{0120}' '@{00D6}' '@{011C}' '@{00D9}' '@{00DA}' '@{00DB}' '@{00DC}'
 '@{016C}' '@{015C}' '@{00DF}' '@{00E0}' '@{00E1}' '@{00E2}' '@{00E4}' '@{010B}'
 '@{0109}' '@{00E7}' '@{00E8}' '@{00E9}' '@{00EA}' '@{00EB}' '@{00EC}' '@{00ED}'
 '@{00EE}' '@{00EF}' '@{00F1}' '@{00F2}' '@{00F3}' '@{00F4}' '@{0121}' '@{00F6}'
 '@{011D}' '@{00F9}' '@{00FA}' '@{00FB}' '@{00FC}' '@{016D}' '@{015D}';

 Zcharacter table ! C4 - Latin 4 (North European)

 '@{0104}' '@{0138}' '@{0156}' '@{0128}' '@{013B}' '@{0160}' '@{0112}' '@{0122}'
 '@{0166}' '@{017D}' '@{0105}' '@{0157}' '@{0129}' '@{013C}' '@{0161}' '@{0113}'
 '@{0123}' '@{0167}' '@{014A}' '@{017E}' '@{014B}' '@{0100}' '@{00C1}' '@{00C2}'
 '@{00C3}' '@{00C4}' '@{00C5}' '@{00C6}' '@{012E}' '@{010C}' '@{00C9}' '@{0118}'
 '@{00CB}' '@{0116}' '@{00CD}' '@{00CE}' '@{012A}' '@{0110}' '@{0145}' '@{014C}'
 '@{0136}' '@{00D4}' '@{00D5}' '@{00D6}' '@{00D8}' '@{0172}' '@{00DA}' '@{00DB}'
 '@{00DC}' '@{0168}' '@{016A}' '@{00DF}' '@{0101}' '@{00E1}' '@{00E2}' '@{00E3}'
 '@{00E4}' '@{00E5}' '@{00E6}' '@{012F}' '@{010D}' '@{00E9}' '@{0119}' '@{00EB}'
 '@{0117}' '@{00ED}' '@{00EE}' '@{012B}' '@{0111}' '@{0146}' '@{014D}' '@{0137}'
 '@{00F4}' '@{00F5}' '@{00F6}' '@{00F8}' '@{0173}' '@{00FA}' '@{00FB}' '@{00FC}'
 '@{0169}' '@{016B}';

 Zcharacter table ! C5 – Cyrillic

 '@{0401}' '@{0402}' '@{0403}' '@{0404}' '@{0405}' '@{0406}' '@{0407}' '@{0408}'
 '@{0409}' '@{040A}' '@{040B}' '@{040C}' '@{040E}' '@{040F}' '@{0410}' '@{0411}'
 '@{0412}' '@{0413}' '@{0414}' '@{0415}' '@{0416}' '@{0417}' '@{0418}' '@{0419}'
 '@{041A}' '@{041B}' '@{041C}' '@{041D}' '@{041E}' '@{041F}' '@{0420}' '@{0421}'
 '@{0422}' '@{0423}' '@{0424}' '@{0425}' '@{0426}' '@{0427}' '@{0428}' '@{0429}'
 '@{042A}' '@{042B}' '@{042C}' '@{042D}' '@{042E}' '@{042F}' '@{0430}' '@{0431}'
 '@{0432}' '@{0433}' '@{0434}' '@{0435}' '@{0436}' '@{0437}' '@{0438}' '@{0439}'
 '@{043A}' '@{043B}' '@{043C}' '@{043D}' '@{043E}' '@{043F}' '@{0440}' '@{0441}'
 '@{0442}' '@{0443}' '@{0444}' '@{0445}' '@{0446}' '@{0447}' '@{0448}' '@{0449}'
 '@{044A}' '@{044B}' '@{044C}' '@{044D}' '@{044E}' '@{044F}' '@{0451}' '@{0452}'
 '@{0453}' '@{0454}' '@{0455}' '@{0456}' '@{0457}' '@{0458}' '@{0459}' '@{045A}'
 '@{045B}' '@{045C}' '@{045E}' '@{045F}';

 Zcharacter table ! C6 – Arabic

 '@{060C}' '@{061B}' '@{061F}' '@{0621}' '@{0622}' '@{0623}' '@{0624}' '@{0625}'
 '@{0626}' '@{0627}' '@{0628}' '@{0629}' '@{062A}' '@{062B}' '@{062C}' '@{062D}'
 '@{062E}' '@{062F}' '@{0630}' '@{0631}' '@{0632}' '@{0633}' '@{0634}' '@{0635}'
 '@{0636}' '@{0637}' '@{0638}' '@{0639}' '@{063A}' '@{0640}' '@{0641}' '@{0642}'
 '@{0643}' '@{0644}' '@{0645}' '@{0646}' '@{0647}' '@{0648}' '@{0649}' '@{064A}'
 '@{064B}' '@{064C}' '@{064D}' '@{064E}' '@{064F}' '@{0650}' '@{0651}' '@{0652}';

 Zcharacter table ! C7 – Greek

 '@{0384}' '@{0385}' '@{0386}' '@{0388}' '@{0389}' '@{038A}' '@{038C}' '@{038E}'
 '@{038F}' '@{0390}' '@{0391}' '@{0392}' '@{0393}' '@{0394}' '@{0395}' '@{0396}'
 '@{0397}' '@{0398}' '@{0399}' '@{039A}' '@{039B}' '@{039C}' '@{039D}' '@{039E}'
 '@{039F}' '@{03A0}' '@{03A1}' '@{03A3}' '@{03A4}' '@{03A5}' '@{03A6}' '@{03A7}'
 '@{03A8}' '@{03A9}' '@{03AA}' '@{03AB}' '@{03AC}' '@{03AD}' '@{03AE}' '@{03AF}'
 '@{03B0}' '@{03B1}' '@{03B2}' '@{03B3}' '@{03B4}' '@{03B5}' '@{03B6}' '@{03B7}'
 '@{03B8}' '@{03B9}' '@{03BA}' '@{03BB}' '@{03BC}' '@{03BD}' '@{03BE}' '@{03BF}'
 '@{03C0}' '@{03C1}' '@{03C2}' '@{03C3}' '@{03C4}' '@{03C5}' '@{03C6}' '@{03C7}'
 '@{03C8}' '@{03C9}' '@{03CA}' '@{03CB}' '@{03CC}' '@{03CD}' '@{03CE}';

 Zcharacter table ! C8 – Hebrew

 '@{05D0}' '@{05D1}' '@{05D2}' '@{05D3}' '@{05D4}' '@{05D5}' '@{05D6}' '@{05D7}'
 '@{05D8}' '@{05D9}' '@{05DA}' '@{05DB}' '@{05DC}' '@{05DD}' '@{05DE}' '@{05DF}'
 '@{05E0}' '@{05E1}' '@{05E2}' '@{05E3}' '@{05E4}' '@{05E5}' '@{05E6}' '@{05E7}'
 '@{05E8}' '@{05E9}' '@{05EA}';

 10 · Inside Information (advanced)

 159

 Zcharacter table ! C9 - Latin 5 (Turkish)

 '@{00C0}' '@{00C1}' '@{00C2}' '@{00C3}' '@{00C4}' '@{00C5}' '@{00C6}' '@{00C7}'
 '@{00C8}' '@{00C9}' '@{00CA}' '@{00CB}' '@{00CC}' '@{00CD}' '@{00CE}' '@{00CF}'
 '@{011E}' '@{00D1}' '@{00D2}' '@{00D3}' '@{00D4}' '@{00D5}' '@{00D6}' '@{00D8}'
 '@{00D9}' '@{00DA}' '@{00DB}' '@{00DC}' '@{0130}' '@{015E}' '@{00DF}' '@{00E0}'
 '@{00E1}' '@{00E2}' '@{00E3}' '@{00E4}' '@{00E5}' '@{00E6}' '@{00E7}' '@{00E8}'
 '@{00E9}' '@{00EA}' '@{00EB}' '@{00EC}' '@{00ED}' '@{00EE}' '@{00EF}' '@{011F}'
 '@{00F1}' '@{00F2}' '@{00F3}' '@{00F4}' '@{00F5}' '@{00F6}' '@{00F8}' '@{00F9}'
 '@{00FA}' '@{00FB}' '@{00FC}' '@{0131}' '@{015F}' '@{00FF}';

Reading your source file

As well as populating the ZSCII table, the Cn switches also
perform another function; they define the character set
which applies to your source file. For example, if you
specify C8, the compiler expects to find a mixture of
English text (Inform words like Constant, if, description and Initialise) and Hebrew text
(the strings which can be displayed and the dictionary words which can be typed while the
game is being played), encoded using ISO 8859-8. Remember we said that values $20..$7F
(English letters, digits and punctuation) are identical in each of the nine encodings; the
international differences lie in the 96 characters with values $A0..$FF.

This can cause problems if operating systems don't stick to the ISO 8859 encodings. For
example, while Window's Latin 1 code page CP1252 is effectively identical to ISO 8859-1
(which is why games can be written in English, French, German and so on without great
difficulty), this doesn't always hold true for other code pages. Thus, the Windows Central
European CP1250 is significantly different from ISO 8859-2, and the high values in Windows
Cyrillic CP1251 don't match ISO 8859-5 at any point; there may also be discrepancies with
other code pages.

If you encounter the problem, you can get round it by creating a mapping file which
transforms the character set used by your source file into the ISO 8859 character set which
the compiler is expecting. Here are two we prepared earlier: win1250.map for use with C2:

 ! Windows Central Europe (code page 1250) to ISO 8859-2
 C2
 0, 63, 63, 63, 63, 63, 63, 63, 63, 32, 10, 63, 10, 10, 63, 63
 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111
 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126, 63
 63,129, 44,131, 34, 46, 63, 63,136, 63,169, 60,166,171,174,172
 144, 39, 39, 34, 34, 46, 45, 45,152, 84,185, 62,182,187,190,188
 32,183,162,163,164,161,124,167,168, 67,170, 60, 63, 45, 82,175
 176, 63,178,179,180, 63, 63, 46,184,177,186, 62,165,189,181,191
 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207
 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223
 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239
 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255

and win1251.map for use with C5:

 ! Windows Cyrillic (code page 1251) to ISO 8859-5
 C5
 0, 63, 63, 63, 63, 63, 63, 63, 63, 32, 10, 63, 10, 10, 63, 63
 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111
 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126, 63

More information about ISO 8859
and Microsoft's code pages can be
found here

http://www.microsoft.com/globaldev/reference/cphome.mspx

10 · Inside Information (advanced)

 160

 162,163, 44,243, 34, 46, 63, 63, 63, 63,169, 60,170,172,171,175
 242, 39, 39, 34, 34, 46, 45, 45,152, 84,249, 62,250,252,251,255
 32,174,254,168, 36, 63,124,253,161, 67,164, 60, 63, 45, 82,167
 63, 63,166,246, 63, 63, 63, 46,241,240,244, 62,248,165,245,247
 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191
 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207
 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223
 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239

Lines starting with "!" are treated as comments. The line beginning with "C" defines the ISO
set to map to, and means that you don't then need to provide a -Cn command line switch.
To use the mapping, Inform treats each character in the source file as a number between 0
and 255, and uses that number as an index into the mapping table. For example, suppose
that the character read in from a Russian Windows source file is the Cyrillic small letter "yu",
represented in CP1251 by the number 254. Inform takes that entry in the mapping, which is
238 (highlighted in the win1251.map table above); therefore the "yu" character is regarded
as being 238 in ISO 8859-5. Contrast this with a Polish source file, where the character in
CP1250 represented by the number 254 -- a small "t" with a cedilla -- is also at position 254
in ISO 8859-2, so the character number remains unchanged.

The name of the mapping file is specified by a compiler path variable +charset_map. For
example, a Russian game could be compiled with a command line of the form:

 inform +charset_map=win1251.map +language_name=Russian mygame.inf

Printing ZSCII characters

Let's suppose that you've compiled your game without supplying any C switch, and that
you've used the Zcharacter directive to add the three characters '¢°±'; these are now in
the ZSCII table at positions 224...226, as illustrated in the previous section. You can output
them in six ways:

1. print "¢°±"; print a string
which includes
the literal
character values.

2. print (char) '¢', (char) '°',
(char) '±';

print individual
character
constants using
the literal values.

The advantage of these forms is
readability. The disadvantage is its lack of
source portability; the game compiled on
the PC will run differently from the same
game compiled on the Mac, because the
internal character sets of those two
machine are not the same. (However, the
game compiled on the PC will run the same
on both PC and Mac, and vice versa;
Inform game files are always portable.)

3. print "@{00A2}@{00B0}
 @{00B1}";

print a string
which includes
the Unicode
character values.

4. print (char) '@{00A2}',
 (char) '@{00B0}',
 (char) '@{00B1}';

print individual
character
constants using
the Unicode
values.

The advantage of these forms is that your
source code remains portable -- you can
for example write the game on a PC, then
copy the source to a Mac. The game will
compile identically in both environments.

5. print "@@224@@225
 @@226";

print a string
which includes
the ZSCII
character values.

6. print (char) 224, (char) 225,
(char) 226;

print individual
character
constants using
the ZSCII values.

The disadvantage of these forms is their
dependence on the physical ordering of the
ZSCII table. Since your additional
characters are appended to those taken
from ISO 8859, their position varies
depending on which C switch is used.

 10 · Inside Information (advanced)

 161

Note that forms 1-4 won't compile if you mention a character -- literally or by Unicode value
-- which doesn't exist in the game's ZSCII character set. Forms 5 and 6 will compile
regardless of whether or not any character has been allocated to the ZSCII value; if there
isn't a character at that position, the interpreter prints a question mark.

Remember that you can use constructs like @^a to represent 'â', and like @ss to represent
'ß'. The good news is that these constructs are independent of the C switch setting; if 'ß'
appears somewhere in the ZSCII table, then @ss will represent it. The bad news is that
these constructs aren't extensible. For example, one of the characters loaded by switch C3 is
'j' with a circumflex, but you can't use @^j to represent it.

TECHNICAL NOTE: Due to related bugs in the 6.21 compiler and the 0.2 version of the Z-
Machine Standards Document, you may encounter problems with printing the left and right
guillemet characters. @{00AB}, @@163 and @<< should all output '«', while @{00BB},
@@162 and @>> should all output '»'. Although the compiler now gets this right, the result
may vary depending on the age of the interpreter which the player is using.

The bottom line is: using these techniques, an Inform game can output a maximum of 191
different characters: the 95 standard values with ZSCII codes of 32...126, and anywhere up
to 96 extra characters with ZSCII codes of 155 upwards.

Printing Unicode characters

There's another technique available which bypasses the ZSCII character set (and its limit of
191 characters) altogether -- printing Unicode directly. Version 1.0 the Z-Machine Standards
Document introduced the check_unicode (test if interpreter can handle a given Unicode
character) and print_unicode (output a given Unicode character) opcodes. Create this
routine:

 [Unicode c exist;
 if (HDR_TERPSTANDARD->0 < 1) { @print_char '?'; return; }
 @check_unicode c -> exist;
 if (exist & $0001) @print_unicode c;
 else @print_char '?';
];

TECHNICAL NOTE: HDR_TERPSTANDARD -- bytes $0032 and $0033 of the game header --
reflects the version of the standard to which the interpreter conforms; we can't use the new
opcodes on a pre-1.0 interpreter. If check_unicode returns a flag bit of 1 then it's safe to output
the character using print_unicode.

We can then use this routine either by calling it directly, or using it as a print rule. Its
argument is a simple Unicode character number, best given in hexadecimal. For instance, we
could display a small Greek 'pi' symbol with either of:

 Unicode($03C0);
 print (Unicode) $03C0;

As we said, this method is independent of ZSCII; you can output any characters irrespective
of whether they exist in the game's ZSCII character set.

String packing

Although we've been talking about ZSCII as an eight-bit encoding system, the Z-machine
doesn't actually hold each ZSCII character in a separate byte. Rather, it stores characters
using five-bit units, in which (slightly simplified):

• lower case letters a-z and spaces each occupy a single unit,
• upper case letters A-Z, digits 0-9, newlines and common punctuation symbols each

occupy two units, and
• other characters each occupy four units.

10 · Inside Information (advanced)

 162

The major advantage of this scheme is that lower case text -- the largest component of
many games -- is stored fairly economically at three characters to a sixteen-bit word (which
is 50% more effective than storing at two bytes to a word). The downside is that each upper
case and punctuation character costs ten bits rather than eight, but such characters are
relatively infrequent. The major disadvantage -- which doesn't really impinge if you're writing
a game in English -- is that each accented character occupies four units; this hits hardest in
the dictionary, where only nine storage units are available for each dictionary entry. Entries
are stored in lower case, so an entry can comprise up to: nine unaccented letters, one
accented letter plus five unaccented letters, or two accented letters plus a single unaccented
letter. In a heavily accented language like French, this is a real issue.

There's a way round the limitation, using two more forms of the Zcharacter directive in
order to manipulate the 'Alphabet table' -- the Z-machine's list of 26 characters which
occupy a single storage unit and 51 characters which occupy two units. Here's the default
table:

 abcdefghijklmnopqrstuvwxyz
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ¤^0123456789.,!?_#'"/\-:()

The character shown here as ¤ is a non-printing escape code, while ^ represents the newline
character. Using a directive like:

 Zcharacter '@`e';

near the start of your source file places the specified character 'è' into the Alphabet table. It
does this not by extending the table, but rather by replacing an existing character there
which hasn't yet been used; the search for an unused character starts at '0' and moves
rightwards along the bottom row. You can provide several such Zcharacter directives, each
one swopping a single character into the table. Alternatively, you can define a completely
new Alphabet table by using the fourth and final form of the Zcharacter directive; for
example:

 Zcharacter
 "abcdefghijklmnopqrstuvwxyz"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "0123456789-',.;:@'e@`a@`e@`u@^e@^i@^u";

In this format, the first and second strings are each exactly 26 characters long, while the
third contains only 23 characters -- ¤^" for the escape, the newline and the double quotes
are included automatically. The advantage of this method would seem to be that you can
choose to retain the digits and the common punctuation, losing instead much rarer
characters like '#' and '\'. The resulting table is:

 abcdefghijklmnopqrstuvwxyz
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ¤^"0123456789-',.;:éàèùêîû

On a sample of French text, the overhead of using accented characters was reduced from 6-
7% (using the standard table) to 2-3% (using this table), against the same text without
accents.

TECHNICAL NOTE: A default Alphabet table is built into the interpreter. However, if you use either
of these Zcharacter directives, then the default table becomes inadequate, and the compiler
must include a replacement table within the game file. The table's address is given in the game's
header at address HDR_ALPHABET-->0. You can display the table by including Roger Firth's
dump.h library extension, and typing DUMP ALPHA.

 10 · Inside Information (advanced)

 163

Remember that, prior to version 6.30 of the Inform compiler, neither of these Zcharacter
forms worked properly on most platforms.

TECHNICAL NOTE: An alternative approach, rather than adding accents to dictionary words, is
to remove them from the player's input. For example, you might include code like this in your
LanguageToInformese routine:

 for (i=0 : i<buffer->1 : i++)

 switch (buffer->(i+2)) {
 '@`a','@'a','@^a','@:a','@~a','@oa': buffer->(i+2) = 'a';
 '@ae': buffer->(i+2) = 'a'; i++; LTI_Insert(i+2,'e');
 '@cc': buffer->(i+2) = 'c';
 '@`e','@'e','@^e','@:e': buffer->(i+2) = 'e';
 '@`i','@'i','@^i','@:i': buffer->(i+2) = 'i';
 '@~n': buffer->(i+2) = 'n';
 '@`o','@'o','@^o','@:o','@~o','@/o': buffer->(i+2) = 'o';
 '@oe': buffer->(i+2) = 'o'; i++; LTI_Insert(i+2,'e');
 '@ss': buffer->(i+2) = 's'; i++; LTI_Insert(i+2,'s');
 '@`u','@'u','@^u','@:u': buffer->(i+2) = 'u';
 '@'y': buffer->(i+2) = 'y';
 }
 @tokenise buffer parse;

Runtime issues

Access to the full range of 50,000 Unicode characters opens up all sorts of enticing
possibilities... but not for long. It's important to remember that the majority of English
computer fonts have fairly limited support for characters beyond the ISO 8859-1 repertoire.
Sure, if you're based in Algeria, or Bulgaria, or Cambodia, then you'll have appropriate local
fonts on your machine. Elsewhere in the world, though, those fonts are unlikely to be
available, and therefore a game written to use those fonts will become unplayable. Until such
as time as fonts with reasonably complete Unicode support become the norm rather than the
exception, you'll either have to be modest in your creativity, or your players will have to be
prepared to obtain the fonts for themselves.

A small number of Unicode fonts are readily available. You might consider (see also Alan
Wood's site, mentioned earlier, for other possibilities):

• Gentium (free)
• Lucida Sans Unicode (free)
• Code2000 ($5 shareware)

It's not just the lack of appropriate fonts which can be a stumbling block; many Z-machine
interpreters themselves are weak in Unicode support. The 1.0 standard requires only that the
interpreter be able to display characters up to $00FF -- effectively those defined by the C1
switch -- which means that, even if the font provides them, you can't rely on characters
above that value being displayed. Thus, for example, most ports of the Frotz interpreter
assume the use of ISO 8859-1 at all times; they also display '?' for all Unicode characters in
the range $0100-$FFFF, thus precluding the C2-C9 character sets, let alone anything more
esoteric. Of the 70 or so Z-machine interpreters in the archive, the only ones offering full
support for extended Unicode characters are believed to be Windows Frotz 2002, Zip2000
(RISC OS) and Zoom (X-Windows and Mac OS X); this is alas another argument against
being too adventurous in your character displays.

http://www.sil.org/~gaultney/gentium/
http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm
http://home.att.net/~jameskass/

10 · Inside Information (advanced)

 164

Little-used features: what's a low string?

Whereas most character strings (other than words in the dictionary) are
stored all together, along with the Z-code routines, in the High Memory
area of the Z-machine, a handful can be held in a part of the Dynamic
Memory area called the Low String Pool. Although you can't modify those strings as a
game progresses, you can change the way in which they're accessed. This is best explained
by example; suppose that your game includes this statement, which is executed periodically:

 if (the_time > 359 && the_time < 1080) {
 string 0 "sun"; string 1 "bright blue";
 } ! day: 06:00 - 17:59
 else {
 string 0 "moon"; string 1 "night-time";
 } ! night: 18:00 - 05:59

What happens is: at compile time the compiler places all four of those strings "sun", "bright
blue", "moon" and "night-time" in the Low String Pool area, along with a default string of
" " (three spaces). At run time, the interpreter has 32 Low String pointers, numbered 00
to 31, which initially all point to the default three spaces. When the interpreter executes the
statement above, it either adjusts pointer 00 to refer to "sun" and pointer 01 to refer to
"bright blue", or it adjusts pointer 00 to refer to "moon" and pointer 01 to refer to "night-
time". Although there's a fixed limit of 32 pointers, there's less restriction on the number of
strings to which they point; you can if required adjust the string which each references many
times during the course of a game.

What use is this? Well, you can access the current values of the 32 low string pointers by
embedding the forms @00 to @31 in print strings; the effect is to output whatever those
pointers currently reference. Thus, these statements:

 style bold; print "The @00 shines down from the @01 sky."; style roman;

will produce this 'in daytime':

 The sun shines down from the bright blue sky.

this 'at night':

 The moon shines down from the night-time sky.

and this if you try to print the message before having executed any assignments to pointers
00 and 01 (so be careful):

 The shines down from the sky.

In fact, low strings can be useful even if their values don't change during the game. Suppose
that your family-set game makes frequent mention of "Grandfather". You could code it thus:

 [Initialise;
 string 0 "Grandfather";
 ...
];

 Object study "@00's study"
 with description
 "@00 loves to relax in this shadowy book-filled den, and can be
 found here most evenings, dozing before the big log fire. In all
 the years you've been visiting him, you've never known @00 not to
 have an open book next to his chair.",
 s_to workshop,
 has light;

More information in
the DM:§1.11

http://www.inform-fiction.org/manual/html/s1.html#s1_11

 10 · Inside Information (advanced)

 165

 Object workshop "@00's workshop"
 with description
 "His workshop is @00's pride and joy, with every tool hanging
 well-oiled in its appointed place, every nut and bolt, nail and
 screw, rivet and washer meticulously filed away in row upon row
 of neatly labelled tobacco tins. @00 can usually be found here
 soon after breakfast, stopping work only at lunchtime and for
 an occasional nap.",
 n_to study,
 has light;

The real advantage here is economy of memory. A word like "Grandfather" occupies 12
storage units (two units for the capital "G" and one for each lower case letter, with each unit
requiring five bits) every time it's used. A pointer like "@00" needs only two storage units for
each use, plus a single block of 12 units to hold the word in the Low String Pool, so for text
that's repeated frequently, the savings can soon add up.

For completeness, we should mention that earlier releases of Inform used a slightly clumsier
mechanism, requiring a Lowstring directive:

 Lowstring GF_STR "Grandfather";

 [Initialise;
 string 0 GF_STR;
 ...
];

Although this mechanism still works, there's no reason to use it; the new method which
doesn't require a Lowstring directive is simpler and clearer.

Little-used features: what's an abbreviation?

In the previous topic, we showed how one use for the 32 Low Strings is as
shorthand for words or phrases which occur frequently in printed text: you
just assign values to them in Initialise(), and then use the forms
@01..@31 in your text strings, just as you might use @@64 to print a literal "@", or @^a to
print "â".

That's fine for long words or discrete phrases which you'll easily recognise as you're
composing your text. However, there are much greater memory savings to be made by
abbreviating short sequences, maybe only three or four characters long, which crop up
frequently both on their own or as parts of longer words (for example, "the" has already
appeared eight times in this topic, "for" six times, " as" four times). Cutting each of those
down to two storage units doesn't look much, but over the length of a big game, it soon
saves a considerable amount. Note that phrase "over the length of a big game" -- all of this
talk about conserving memory is relevant only when you're fighting to keep your game
within the overall Z-Machine limits (256Kb for a Version 5 game, or more probably 512Kb for
a Version 8 game).

Abbreviations are like Low Strings in that they're stored in the Low String Pool, referenced
within strings using just two storage units, and applicable only to printed text. They're
unlike Low Strings in four ways:

1. Each abbreviation you wish to use must be pre-declared by an Abbreviate directive.

2. You can declare up to 64 abbreviations, versus 32 low strings.

3. Having declared them like that, you don't have to mark them explicitly in the text;
instead, the compiler finds them automatically...

4. ...but only if you select Economy mode by supplying the -e compiler switch; if you
forget that, your Abbreviate directives have no effect.

More information
in the DM: §45

http://www.inform-fiction.org/manual/html/s45.html

10 · Inside Information (advanced)

 166

Each potential abbreviation needs to be specified in a separate Abbreviate directive, which
looks like this:

 Abbreviate " the ";

This tells the compiler that you think those five characters occur often enough to be worth
abbreviating (bit of a no-brainer, really). To decide which phrases are worth abbreviating,
you can (a) just guess, (b) run the compiler (very very slowly) with the -u switch, or (c) use
Emily Short's handy list.

Little-used features: what's a fake action?

As we explained in How do I define a new verb?, an 'action' results from
the parser matching some text typed by the player with a line of
grammar, and is by default dealt with by a matching routine. (We showed
a grammar for the verbs SMILE, GRIN, SMIRK, BEAM and TWINKLE causing an action of
Smile, handled by a SmileSub() routine.)

We emphasise "by default" because it's common to intercept an action before the action
routine gets a chance to do its stuff. That's exactly what the before property is there for --
to enable an object which is the subject of an action to behave in an appropriate manner,
which may be to do something completely non-standard.

Most actions affect a single target object, a few have no target (for example PRAY, SLEEP,
SWIM), and a few mention two objects (for example ATTACH X TO Y, PUT X IN Y, THROW X
AT Y). It's this last group that we're interested in here; the ones where two objects are
involved in the action. Not unreasonably, the second object might like to have a say in
what's going on, but there isn't a mechanism equivalent to before and after -- which apply
only to the first object -- whereby the second can automatically be consulted. The closest
you get is react_before and react_after, but any react_before properties run prior to any
before properties, when what you'd really like is something that runs once the first object's
before has decided to go ahead, but before it actually happens.

So, if there isn't a built-in way of dealing with situations like this, you have to devise
something appropriate yourself. By way of example, let's consider the POINT X AT Y process
which we described in How do I use my new object property?, where the first object uses
this code to get the second object involved:

 before [;
 PointAt:
 if (self has light && second provides when_lit)
 return second.when_lit();
],

and the second object deals with that involvement something like this:

 when_lit "The owl blinks in mild surprise.",

Here's that same example, with an alternative implementation using a fake action. What's
'fake' about such actions is that they never appear in a line of grammar (and so cannot be
directly triggered by anything the player types); neither do they have a handler routine.
Since the presence of both those is what makes a normal action acceptable, you need to
persuade the compiler that what you're doing is valid; that's what the Fake_Action directive
is there for.

The whole thing looks like this:

 Fake_Action PointedAt;

More information
in the DM: §6

http://emshort.home.mindspring.com/Abbrev.html
http://www.inform-fiction.org/manual/html/s6.html
http://www.firthworks.com/roger/informfaq/vv.html#1
http://www.firthworks.com/roger/informfaq/oo.html#14

 10 · Inside Information (advanced)

 167

 Object -> "flashlight"
 with name 'flashlight',
 before [;
 PointAt:
 if (self has light) {
 action = ##PointedAt;
 if (second.before()) { action = ##PointAt; rtrue; }
 action = ##PointAt;
 }
],
 after [;
 SwitchOn: give self light;
 SwitchOff: give self ~light;
],
 has switchable ~on ~light;

 Object -> "owl"
 with name 'owl',
 before [;
 PointedAt:
 "The owl blinks in mild surprise.";
],
 has animate;

 Object -> "mouse"
 with name 'mouse',
 before [;
 PointedAt:
 remove self;
 "The startled mouse disappears into the undergrowth.";
],
 has animate;

 [PointAtSub; "Pointless.";];

 Verb 'aim' 'point'
 * held 'at'/'on'/'towards' noun -> PointAt;

 Extend only 'shine'
 * held 'at'/'on'/'towards' noun -> PointAt;

The verb stuff at the end is the same as before, but the highlighted object definitions are a
bit different. The flashlight's before property now has to adjust the action variable,
effectively pretending that the current action is PointedAt rather than PointAt, then manually
give the second object's before property a chance to react, then finally reinstate the real
PointAt action before letting the action complete appropriately. That's all a bit messy; on the
other hand, the objects being pointed at can now deal with the situation by means of regular
before properties rather than with our invented when_lit property. (By the way, if you're
wondering why we didn't use the <PointedAt second> or <<PointedAt second>> statements
in the flashlight, it's because neither of those returns the second object's response, which the
flashlight needs to determine whether (if true) the action has been dealt with, or (if false)
the default action should be allowed to continue.)

Personally, I think that fake actions have no advantage over the method using local
properties. Also, the DM4 labels them "obsolete", so that's a better reason for avoid their
use.

How is the parse array structured?

Every time that the player types a command, the parser:

1. stores all of the typed characters in a buffer array (and, in the Z-machine, converts
them to lower case),

10 · Inside Information (advanced)

 168

2. divides that stream of characters into 'tokens' -- commas, periods, and words
separated by spaces,

3. attempts to find each token in the game's dictionary, and
4. stores the information about the tokens in a second array: parse.

For example, the command SAILOR,SAY HELLO is divided into four tokens: SAILOR, the
comma, SAY and HELLO.

The library routine KeyboardPrimitive() is responsible for this processing, and you can call
it yourself if you need to ask the player for some additional input. Even if you don't, there
are still cases where it's useful to be able to manipulate the input command stream (see, for
example, the use of the BeforeParsing() entry point in this topic), which requires that you
understand the structure of the two arrays.

The DM4 is a little confused on the arrays' layout, so we'll explain them
using our SAILOR,SAY HELLO example. After that command, the contents
of the two arrays are as shown below. buffer is a byte array holding the
characters as typed. The first byte is preset to the maximum number of
characters that can be handled, and shouldn't be altered -- the library sets it to 120. The
second byte specifies that 16 characters have been typed. Those character then follow.

So, that gives us:

 buffer->0 is always 120
 buffer->1 is the character count (16)
 buffer->2 is the first character ('s')
 buffer->3 is the second character ('a')
 ...
 buffer->17 is the sixteenth character ('o').

parse is more complex, being a mixed array of bytes and words. The first byte is preset to
the maximum number of tokens that can be handled, and shouldn't be altered -- the library
sets it to 15. The second byte specifies that 4 tokens have been identified. Information on
those tokens then follows.

In this example:

 parse->0 is always 15
 parse->1 is the token count (4)
 parse-->1 is the dictionary address of the first token ('sailor')
 parse->4 is the number of characters in the first token (6)
 parse->5 is the token's start position in buffer (2)
 parse-->3 is the dictionary address of the second token (',')
 parse->8 is the number of characters in the second token (1)
 parse->9 is the token's start position in buffer (8)
 parse-->5 is the dictionary address of the third token ('say')
 parse->12 is the number of characters in the third token (3)
 parse->13 is the token's start position in buffer (9)
 parse-->7 is zero, because the fourth token ('hello') isn't in the dictionary

More information
in the DM: §2.5

http://www.firthworks.com/roger/informfaq/tt.html#6
http://www.inform-fiction.org/manual/html/s2.html#s2_5

 10 · Inside Information (advanced)

 169

 parse->16 is the number of characters in the fourth token (5)
 parse->17 is the token's start position in buffer (13).

If you're using Glulx, the principles are the same... and the arrays are different (see the
Glulx Technical Reference for more details). Neither buffer nor parse stores its maximum
capacity at the beginning. Also, the Glulx buffer uses an initial word rather than a byte to
hold the number of character typed; after that, its content is identical to the Z-machine's.
The Glulx version of parse, however, differs from the Z-machine's in that it's a word-only
array -- one word for the token count, and then one each for dictionary address, token
length and token start position in buffer. (to save space on this page, the width of entries in
the diagram on the right has been compressed.) Note that buffer contains the characters
exactly as typed, without any case conversion.

To step through all of the parsed tokens, use a loop like this:

 [tokenCount;
 #Ifdef TARGET_ZCODE;
 return parse->1;
 #Ifnot; ! TARGET_GLULX
 return parse-->0;
 #Endif; ! TARGET_
];

 for (w=1 : w<=tokenCount() : w++) { ... }

where variable w numbers the tokens as 1,2,3... Then, use these routines to fetch the three
attributes of each token:

 [tokenDict w; ! dictionary value of token 1,2,3...
 #Ifdef TARGET_ZCODE;
 return parse-->(2*w - 1);
 #Ifnot; ! TARGET_GLULX
 return parse-->(3*w - 2);
 #Endif; ! TARGET_
];

 [tokenLen w; ! length in chars of token 1,2,3...
 #Ifdef TARGET_ZCODE;
 return parse->(4*w);
 #Ifnot; ! TARGET_GLULX
 return parse-->(3*w - 1);
 #Endif; ! TARGET_
];

 [tokenPos w; ! position in buffer of token 1,2,3...
 #Ifdef TARGET_ZCODE;
 return parse->(4*w + 1);
 #Ifnot; ! TARGET_GLULX
 return parse-->(3*w);
 #Endif; ! TARGET_
];

http://eblong.com/zarf/glulx/technical.txt

10 · Inside Information (advanced)

 170

Here's a simple example: an intransigent NPC who responds to all commands with "Surely
you don't expect me to...?". This is his orders property:

 orders [bufsize i;
 #Ifdef TARGET_ZCODE;
 bufsize = WORDSIZE + buffer->1; ! end of Z-machine buffer
 #Ifnot; ! TARGET_GLULX
 bufsize = WORDSIZE + buffer-->0; ! end of Glulx buffer
 #Endif; ! TARGET_
 if (tokenDict(2) == ',//') i = tokenPos(3); ! NPC, do something
 else i = tokenPos(4); ! TELL NPC TO do something
 print "~Surely you don't expect me to ";
 for (: i<bufsize : i++) print (char) buffer->i;
 "?~";
],

The only real complexity is the need to distinguish between NPC, DO SOMETHING (where the
actual command starts at the third token) and TELL NPC TO DO SOMETHING (where the
fourth token begins the command). For example:

 >SAILOR,JUMP IN THE AIR
 "Surely you don't expect me to jump in the air?"

 >TELL SAILOR TO LIE ON THE GROUND
 "Surely you don't expect me to lie on the ground?"

 >YES
 That was a rhetorical question.

How are the standard print rules implemented?

A print rule is simply a routine which outputs its single argument in some form. For example,
a print rule for small Roman numerals might look like this:

 [roman n;
 switch (n) {
 1: print "I";
 2: print "II";
 3: print "III";
 4: print "IV";
 5: print "V";
 6: print "VI";
 7: print "VII";
 8: print "VIII";
 9: print "IX";
 10: print "X";
 default: print "[", n, "]";
 }
];

Having defined such a routine, you can either use it as a print rule or call it directly -- the
two work identically:

 print "Chapter ", (roman) chapNumber, ": ", (string) chapTitle, "^"; !
Option 1

 print "Chapter ";
 roman(chapNumber); !
Option 2
 print ": ", (string) chapTitle, "^";

Caution: remember that, as we explained much earlier, you'll get a spurious '1' appearing if
you call the print rule as a routine:

 print "Chapter ", roman(chapNumber), ": ", (string) chapTitle, "^"; ! WRONG

Although it's normally shorter and more convenient to invoke your routine as a rule in a
print statement (Option 1) rather than as a conventional call (Option 2), there are
exceptional cases. One such is when you wish to print to an array rather than to the screen,

http://www.firthworks.com/roger/informfaq/bb.html#1

 10 · Inside Information (advanced)

 171

for example so that you can manipulate the characters prior to display. The library routine
PrintToBuffer() does just this, so one way of outputting the chapter number in lower-case
roman numerals is this:

 Constant MYBUF_SIZE 10;
 Array myBuf buffer MYBUF_SIZE;

 n = PrintToBuffer(myBuf, MYBUF_SIZE, roman, chapNumber);
 for (i=0 : i<n : i++) print (char) LowerCase(myBuf->(i+WORDSIZE));

All well and good, but what if you wish to invoke one of the standard print rules -- (a),
(name), (The) and so on -- in this manner? There's a problem, in that although each rule is
implemented by a routine, the name of the routine isn't the same as the name of the rule.
So, to help if you wish to use the standard rules in this manner, here are the routines to call
(the "__" are two underscore characters):

Standard print rule Equivalent routine call

(A) object CIndefArt(object)

(a) object IndefArt(object)

(address) dictionary_word RT__ChPrintA(dictionary_word)

(char) expression RT__ChPrintC(expression)

(name) object PrintShortName(object)

(number) expression EnglishNumber(expression)

(object) object RT__ChPrintO(object)

(property) property Print__PName(property)

(string) string RT__ChPrintS(string)

(The) object CDefArt(object)

(the) object DefArt(object)

 11 · Tips and Techniques (advanced)

 173

11 · Tips and Techniques (advanced)

(For issues which are even more esoteric than these, visit the Inform Patch List.)

What's the associativity of ~/~~?

There's a problem in the way that Inform handles the two NOT operators
in an expression, in that they don't work quite as you might anticipate:

If you write these: ...they're taken as: ...rather than as:

~X&Y or ~X|Y ~(X&Y) or ~(X|Y) (~X)&Y or (~X)|Y

~~X&&Y or ~~X||Y ~~(X&&Y) or ~~(X||Y) (~~X)&&Y or (~~X)||Y

You need to include the parentheses (as shown in the rightmost column) to be sure of
getting the 'correct' result.

How do I write an XOR function?

Inform doesn't come with built-in XOR (Exclusive OR) operators, but you can achieve the
effect with these routines:

 [XOR a b; return (a | b) & (~(a & b));]; ! Bitwise Exclusive OR

 [XXOR a b; return (a || b) && (~~(a && b));]; ! Logical Exclusive OR

Can I use expressions in <...>?

The <...> statement (to trigger an action) and the <<...>> statement (to trigger an action
and return true) are usually invoked with a literal 'action' argument followed by zero, one or
two variable names, as in:

 <<Inv>>;
 <<Examine self>>;
 <<Insert noun second>>;

These work fine; what isn't so successful is trying to use a variable for the first argument, or
expressions for the second and third arguments. The trick is simple: just enclose things in
parentheses (...). For example:

 <<(action) noun (parent(self))>>;

Is there a Library routine to print direction names?

Yes: LanguageDirection(), which take a direction property (like e_to) as
its argument:

 LanguageDirection(property);

If you're starting from a direction object (like e_obj), just change the call to this:

 LanguageDirection(object.door_dir);

More information in
the DM: §1.6 §1.8

More information
in the DM: §6

More information
in the DM: §37

http://www.inform-fiction.org/patches/
http://www.inform-fiction.org/manual/html/s1.html#s1_6
http://www.inform-fiction.org/manual/html/s1.html#s1_8
http://www.inform-fiction.org/manual/html/s6.html
http://www.inform-fiction.org/manual/html/s37.html

11 · Tips and Techniques (advanced)

 174

Can I introduce a short time delay?

You may occasionally want your game to pause for a short period, for
example between characters appearing tickertape-style (rather than as the
normal instantaneous output stream). The Z-machine is not well-equipped
to handle time delays, but on some interpreters you can achieve the effect using the
@read_char assembler statement; here's one approach:

 [Sleep x; if (x) @read_char 1 x Sleep ->x;];

The routine's argument x is the length of the required delay in tenths of a second; for
example, Sleep(20) will pause for about two seconds. A side-effect of using @read_char is
that the player can press any key to immediately terminate the delay -- useful for those with
experience and/or a low boredom threshold. This example prints the characters in a string
array, with an optional delay after each:

 Array welcome_msg string "Welcome to the game!";

 [PrintStringArray the_array the_delay i;
 for (i=1 : i<=the_array->0 : i++) {
 print (char) the_array->i;
 Sleep(the_delay);
 };
];

 [Initialise;
 location = farmyard;
 new_line; PrintStringArray(welcome_msg, 5); "^";
];

If you're using Glulx you have access to a more powerful and flexible system of timed
events, though it's slightly more trouble to set up. In addition to a Sleep() routine, you need
also to define an event handler, something like this:

 [Sleep x; ! For compatibility, delay in 10ths of a second
 if (glk_gestalt(gestalt_Timer) && x > 0) {
 glk_request_timer_events(x*100);
 KeyCharPrimitive();
 glk_request_timer_events(0);
 }
];

 [HandleGlkEvent ev context abortres;
 switch (ev-->0) {
 evtype_Timer:
 if (context == 1) glk_cancel_char_event(gg_mainwin);
 else glk_cancel_line_event(gg_mainwin, GLK_NULL);
 abortres-->0 = 0;
 return 2;
 }
];

More information
in the DM: §42

More information
in the DM: §2.4

http://www.inform-fiction.org/manual/html/s42.html
http://www.inform-fiction.org/manual/html/s2.html#s2_4

 11 · Tips and Techniques (advanced)

 175

Why can't I address "Dr.Jekyll" or "Mr.Hyde"?

The Inform parser treats "." and "THEN" as separators between commands, so these three
examples all do the same thing:

 > X DAGGER
 > TAKE IT

 >X DAGGER THEN TAKE IT
 >X DAGGER.TAKE IT

This handling of "." becomes a problem if you wish to use it as part of a dictionary word, for
example in "DR." or "MR." to indicate an abbreviation. The easiest way round the difficulty is
to supply a BeforeParsing() entry point, which is called after the parser has read in some
text and set up the buffer (raw text) and parse (parsed text) arrays, but before doing
anything else. Here's a suggested routine:

 [BeforeParsing x;
 for (wn=2 : wn<parse->1 : wn++)
 if (buffer->(parse->(4*wn + 1)) == '.' &&
 parse-->(2*wn - 3) == 'dr' or 'mr' or 'mrs' or 'prof' or
 'rev' or 'st' && parse-->(2*wn + 1) == 'jekyll' or 'hyde') {
 buffer->(parse->(4*wn + 1)) = ' ';
 x++;
 }
 if (x) @tokenise buffer parse;
];

In this example:

• wn is used to index the parse array, omitting the first and last entries
• parse->(4*wn) is the length in characters of entry wn in the parse array
• parse->(4*wn + 1) is the index of the start of that entry in the buffer array
• parse-->(2*wn - 3) is the dictionary value of entry wn-1
• parse-->(2*wn + 1) is the dictionary value of entry wn+1

The routine scans the parse array. If it finds three consecutive entries X.Y, where X is "DR"
or "MR" and Y is "JEKYLL" or "HYDE" then it overwrites the "." in the raw text buffer with a
space, and calls @tokenise to re-create the parse array from the modified buffer. The
NPC's name property handles the outcome in the usual way:

 Object "Dr Jekyll"
 with name 'dr' 'jekyll' 'doctor',
 ...
 has animate proper;

How do I right-align printed numbers?

When printing, Inform treats numbers as signed decimal values, and outputs the digits left-
aligned (for example "123"). If you want to insert leading spaces or zeroes to force right-
alignment (giving " 123" or "00123"), for example when printing a column of figures, you
could use this routine:

More information in
the DM: §2.5 §30

http://www.inform-fiction.org/manual/html/s2.html#s2_5
http://www.inform-fiction.org/manual/html/s30.html

11 · Tips and Techniques (advanced)

 176

 [AlignNum
 num ! number to be aligned (unsigned 0-65535)
 pad ! right-align by inserting this char (default is left-align)
 wid ! field width for right-alignment (default is 5)
 d e; ! local variables
 d = 5;
 if (wid == 0) wid = 5;
 if (num >= 0)
 switch (num) {
 0 to 9: d = 1;
 10 to 99: d = 2;
 100 to 999: d = 3;
 1000 to 9999: d = 4;
 }
 else {
 num = (num & $7FFF)*2 - (num + 30000);
 for (e=3 : UnsignedCompare(num,9999)==1 : num=num-10000) e++;
 switch (num) {
 0 to 9: e = e * 1000;
 10 to 99: e = e * 100;
 100 to 999: e = e * 10;
 }
 }
 if (pad) for (d = wid-d : d>0 : d--) print (char) pad;
 if (e) print e;
 print num;
];

The first parameter is the number to be printed. Note that this is treated as an unsigned
value, in the range 0-65535. The second parameter is a single character. It's optional,
typically ' ' or '0', and is inserted as initial padding to cause the number to be right-aligned.
If this parameter is omitted, the number is left-aligned. The third parameter is a number. It's
optional, and specifies the width of the right-aligned number. If this parameter is omitted,
the default width is five characters. If the value that you specify is too small, the number
overflows; it is not truncated to fit the specified width.

To display a four-digit safe combination, where any of the digits could be zero, you might
produce a line like "The safe combination is '0107'." by these three statements:

 print "The safe combination is '";
 AlignNum(safe.combination,'0',4);
 print "'.^";

You can't use AlignNum() directly as a print rule, because it usually requires three
parameters, and a print rule handles only one. Instead, you could create a separate print
rule as a routine which calls AlignNum(), and use it within a single print statement like this:

 [AlignZ4 n; AlignNum(n,'0',4);];

 print "The safe combination is '", (AlignZ4) safe.combination, "'.^";

Can an 'achieved task' have a negative score?

Inform offers two built-in scoring systems: a simpler one of awarding
points for collecting objects and visiting rooms, and a more advanced
scheme which keeps track of which 'tasks' the player has accomplished. In
this second system, the value of each scored task must lie in the range 0-255. Occasionally,
you'd like to be able to award a score higher than that, or to penalize the player by
deducting points -- that is, awarding a negative score for a prohibited task. For this to work,
the task_scores array, which is where you define the score for each defined task 0...N-1,
must be configured as a word array rather than the current byte array. That is, instead of
creating the array like this:

More information
in the DM: §22

http://www.inform-fiction.org/manual/html/s22.html

 11 · Tips and Techniques (advanced)

 177

 Constant TASKS_PROVIDED;
 Constant NUMBER_TASKS 5;
 Constant MAX_SCORE 25;

 Array task_scores -> 3 7 3 5 7;

you create an array of words:

 Array task_scores --> 3 7 3 5 7;

However, there's more to it than that; you also need to fix those parts of the Library which
are currently expecting a byte array. You do this within your game file by Replacing two
Library routines:

 Replace Achieved;
 Replace FullScoreSub;
 ...
 Include "VerbLib";
 ...
 [Achieved num;
 if (task_done->num==0)
 { task_done->num=1;
 score = score + task_scores-->num; ! CHANGED
 }
];

 [FullScoreSub i;
 ScoreSub();
 if (score==0 || TASKS_PROVIDED==1) rfalse;
 new_line;
 L__M(##FullScore,1);

 for (i=0:i<NUMBER_TASKS:i++)
 if (task_done->i==1)
 { PANum(task_scores-->i); ! CHANGED
 PrintTaskName(i);
 }

 if (things_score~=0)
 { PANum(things_score); L__M(##FullScore,2); }
 if (places_score~=0)
 { PANum(places_score); L__M(##FullScore,3); }
 new_line; PANum(score); L__M(##FullScore,4);
];

Those two routines are copied from verblibm.h, and in each case a single line needs to be
changed (so that task_scores-> becomes task_scores-->).

Fortunately, version 6/11 of the Library makes this much simpler. Those accesses to the byte
array are isolated in a little routine, which you simply Replace:

 Replace TaskScore;

 [TaskScore i; return task_scores-->i;];

Once you've done that, by either method, you can happily award large and negative scores
(the latter enclosed in parentheses):

 Array task_scores --> 300 700 300 (-100) 700;

11 · Tips and Techniques (advanced)

 178

Are the points awarded by a 'scored' object adjustable?

In the built-in scoring system of awarding points for collecting objects and
visiting rooms, the score is determined by the values of the constants
OBJECT_SCORE (default of 4) for the first time you pick up an object
with a scored attribute, and ROOM_SCORE (default of 5) for entering a
scored room.

If you wish for greater flexibility, it's very straightforward to enhance the two Library
routines responsible for this system, by creating a scored_value individual property:

 Replace NoteObjectAcquisitions;
 Replace ScoreArrival;
 ...
 Include "Parser";
 Include "VerbLib";
 ...
 [NoteObjectAcquisitions i s;
 objectloop (i in player)
 if (i hasnt moved) {
 give i moved;
 if (i has scored) {
 if (i provides scored_value) s = i.scored_value();
 else s = OBJECT_SCORE;
 score = score + s;
 things_score = things_score + s;
 }
 }
];

 [ScoreArrival s;
 if (location hasnt visited) {
 give location visited;
 if (location has scored) {
 if (location provides scored_value) s = location.scored_value();
 else s = ROOM_SCORE;
 score = score + s;
 places_score = places_score + s;
 }
 }
];

Those two routines are copied from parserm.h and verblibm.h respectively, and in each case
the value of a new local variable 's' is set either to the object or room's scored_value
property (if it has such a property) or to the appropriate constant (which is what currently
happens). scored_value can be a numeric value -- the number of points to award -- or a
routine which returns such a number. Here are a couple of examples:

 Object puzzle_room "Puzzle chamber"
 with description "A bare room.",
 scored_value 10,
 has scored light;

 Object -> box "box"
 with name 'box',
 with_key key,
 has scored container openable ~open lockable locked;

 Object -> key "key"
 with name 'key',
 scored_value [;
 if (box has moved) return 2;
 print "^[You'd have scored more by taking the box first.]^";
 return 1;
],
 has scored;

More information
in the DM: §22

http://www.inform-fiction.org/manual/html/s22.html

 11 · Tips and Techniques (advanced)

 179

Note that the 'box' object has a scored attribute but no scored_value property, and so will
award the default number of points on first being TAKEn (a scored_value property with no
associated scored attribute is ignored). And the result is...

 Puzzle chamber
 A bare room.

 You can see a box (which is closed) and a key here.

 [Your score has just gone up by ten points.]

 >GET KEY
 Taken.

 [You'd have scored more by taking the box first.]

 [Your score has just gone up by one point.]

 >GET BOX
 Taken.

 [Your score has just gone up by four points.]

ChooseObjects() is messing up TAKE ALL. What can I do?

Inform provides a ChooseObjects() entry point so that you can influence how the parser
chooses between ambiguous object names, typically because you've some additional
knowledge about the objects and their situation to which the parser isn't privy. In general,
it's better to keep any ChooseObjects() routine short and specific, instead controlling
object selection using an object's parse_name property wherever possible.

ChooseObjects() is called in two situations: once (with the code
argument equal to 2) to influence which objects are preferred matches
to a noun phrase by returning a rank from 0 to 9; and then at a later
stage, if the player has typed ALL, it is called with code 1 or 0 to choose whether to accept or
reject individual objects. A generic routine would look like this:

 [ChooseObject obj code;
 switch (code) {
 2: ! Parser wants an 'appropriateness' rating forobj
 ! Inspect obj, and then...
 return 0; ! Sorry -- can't offer any guidance, or
 return 1; ! Very slight preference forobj, or
 ...
 return 9; ! Very strong preference forobj.
 1, ! Parser proposes to include obj in ALL.
 0: ! Parser proposes to exclude obj from ALL.
 ! Inspect obj, and then...
 return 0; ! Agree with Parser, or
 return 1; ! Force inclusion, or
 return 2: ! Force exclusion.
 }
];

If both of these methods are employed at the same time, this can lead to
ChooseObjects(obj,1) being called only for objects to which ChooseObjects(obj,2) has
just given a high ranking. If the individual object(s) proposed in that way are then rejected
(by returning 2), then ALL doesn't refer to anything and a "There are none at all available!"
message results.

The way to separate these two processes is to insert this line in your ChooseObjects():

More information in
the DM: §33

http://www.inform-fiction.org/manual/html/s33.html

11 · Tips and Techniques (advanced)

 180

 [ChooseObject obj code;
 switch (code) {
 2: ! Parser wants an 'appropriateness' hint forobj
 if (indef_wanted == 100) return 0;
 ! Inspect obj, and then...
 ...
];

This checks an undocumented global variable to see if the parser is handling an ALL and will
shortly be proposing inclusions/exclusions. The resulting refusal to give an 'appropriateness'
rating means that TAKE ALL will no longer be affected.

Can ChooseObjects() tell if it's evaluating noun or second?

As explained in the previous topic, the ChooseObjects() entry point can be used to
influence which objects are preferred matches to a noun phrase. Here, we'll show how the
first object chosen (the variable noun) can affect the second object chosen (the variable
second). We'll illustrate this usage by inventing a couple of new verbs:

 [LoosenSub; "You can't loosen that!";];
 [TightenSub; "You can't tighten that!";];

 Verb 'loosen' * noun 'with' held -> Loosen;
 Verb 'tighten' * noun 'with' held -> Tighten;

The idea is that the first object -- we'll be using a 10mm brass bolt -- can be loosened or
tightened by use of the second object, an implement of some form. Here are three possible
tools (though only two of them are capable of doing the job):

 Object spanner10 "10mm spanner"
 with name '10mm' 'spanner' 'tool';

 Object spanner15 "15mm spanner"
 with name '15mm' 'spanner' 'tool';

 Object wrench "adjustable wrench"
 with name 'adjustable' 'wrench' 'tool';

And here is the skeleton of our brass bolt, together with a useful print rule routine:

 Object "10mm brass bolt"
 with name '10mm' 'brass' 'bolt',
 description [;
 print_ret (The) self, " is currently ", (showState) self, ".";
],
 tightness ##Tighten,
 with_tools spanner10 wrench,
 ...
 has static;

 [showState o;
 if (o.tightness == ##Tighten) print "tight";
 else print "loose";];

You'll notice that we've invented two individual properties. tightness indicates the current
state of the bolt, defined as one of the action values ##Tighten (the bolt is currently tight)
or ##Loosen (it's currently loose). More interesting is with_tools, which contains a list of
the tools which can be used to adjust the bolt: the 10mm spanner and the adjustable wrench
are both acceptable, but the 15mm spanner isn't listed, and so won't do the job.

Here's the full definition, with the addition of the before property which does the actual work
of changing the bolt's state:

 Object "10mm brass bolt"
 with name '10mm' 'brass' 'bolt',
 description [;
 print_ret (The) self, " is currently ", (showState) self, ".";
],

 11 · Tips and Techniques (advanced)

 181

 tightness ##Tighten,
 with_tools spanner10 wrench,
 before [i n;
 Loosen, Tighten:
 if (self.tightness == action)
 print_ret (The) self, " is already ", (showState) self, ".";
 n = self.#with_tools / WORDSIZE; ! number of possible tools
 for (i=0 : i<n : i++)
 if (self.&with_tools-->i == second or -second) {
 self.&with_tools-->i = -second;
 self.tightness = action;
 print_ret (The) self, " is now ", (showState) self, ".";
 }
 print_ret (The) second, " doesn't seem to fit ", (the) self, ".";
],
 has static;

This isn't as complex as it looks. The property is preventing the bolt from being tightened
unless it's currently loose and vice versa, and then checking that the second object is one of
the acceptable tools listed in the with_tools property (if it's not, the "doesn't seem to fit"
message appears). If an acceptable tool is employed, the bolt's state is changed (by
self.tightness = action;). The only slightly odd thing is the statement
self.&with_tools-->i = -second;, which updates the list of acceptable tools to mark the
one that the player has actually used. Why have we done that? You'll see in a minute or two.

All of the code that we've written so far will work just as it is. However, since the point of
this topic is to illustrate the benefits that ChooseObjects() can offer, we'd better bring such
a routine into play. This is what we want it to do, when evaluating potential tool objects for
second: (1) prefer objects in the noun.with_tools list to ones which aren't listed, (2)
prefer objects at the start of the list to those at the end, and (3) prefer objects which have
already been used to those which haven't. Here's the code to do all that:

 [ChooseObjects obj code
 i n o;
 if (code ~= 2) rfalse; ! Agree with Parser's ALL decisions
 ! Give an 'appropriateness' score to obj
 if (parameters > 0 && action_to_be == ##Loosen or ##Tighten) {
 ! Is obj a suitable tool?
 o = inputobjs-->2; ! object to be Loosened/Tightened
 if (o ofclass Object && o provides with_tools) {
 n = o.#with_tools / WORDSIZE; ! number of possible tools
 for (i=0 : i<n : i++) ! tool used already, in order of list
 if (o.&with_tools-->i == -obj) return max(9-i, 7); !9, 8, 7, 7...
 for (i=0 : i<n : i++) ! tool not yet used, in order of list
 if (o.&with_tools-->i == obj) return max(6-i, 1); !6, 5, 4, 3, 2,
 !1, 1...
 }
 }
 return 0; ! not Loosen/Tighten, or not a listed tool
];

 [max a b; if (a < b) return b; return a;];

When evaluating candidates for second in the context of Loosen/Tighten, this routine
returns a ranking of 6 for the 10mm spanner (first in the list), and 5 for the wrench (next in
the list); if more tools were listed, they'd get 4, then 3, then 2, then any further tools would
all rank as 1. The 15mm spanner isn't in the with_tools list, so gets the default rank of 0.
However, once the 10mm spanner has been used its ranking increases to 9, while the
wrench would rank as 8 after succcessful use. The effect of all this is that the player can now
type simply LOOSEN BOLT with a strong probability that the parser can infer which tool is
intended, without having to ask "Which did you mean...?".

We've highlighted two undocumented variables in the definition of ChooseObjects(), and
they're the key to making this work. parameters holds 0 while the routine is evaluating
candidates for noun, and 1 while evaluating second; in the latter case the array element
inputobjs-->2 holds the object previously chosen as noun. However, be warned: this all
works only for simple grammars such as our Loosen and Tighten verbs. It can't be used in
grammars which employ the multiexcept or multiinside tokens, or the reverse keyword,
because in these cases noun is evaluated after second, and so isn't available to influence
the decision-making process.

11 · Tips and Techniques (advanced)

 182

How can I change the size of a string or table array?

When you declare a string (or table) array, Inform stores the array's
element count in the first byte (or word). For example, this declaration:

 Array ourPets table "cat" "dog" "rabbit" "guineapig";

creates an array with five elements. ourPets-->1 hold the address of the string "cat";
ourPets-->2 refers to "dog", ourPets-->3 to "rabbit" and ourPets-->4 to "guineapig". In
addition, the compiler places the count of the number of entries -- 4 in this example -- in
ourPets-->0.

The problem comes should you try to modify that 'count' value at runtime. For example,
suppose the kids grow up and change their taste in pets. You might write this code:

 ourPets-->3 = "pony";
 ourPets-->2 = "conger eel";
 ourPets-->1 = "tarantula";
 ourPets-->0 = 3;

Unfortunately, it isn't that easy. On the Z-machine in Strict mode, you'll get a runtime error
from the ourPets-->0 = 3; statement; Glulx gives a compiler error for the same thing.
Inform is being a little over-protective here; there's no reason why you shouldn't be able to
change the count value, providing the new value is something sensible, but alas you can't.

Well, you can; you've just got to cheat a little. The easiest way round the problem is to
conceal the fact that you're updating a string or table array's count by writing a couple of
tiny routines:

 [StoreStringSize arr val; arr->0 = val;];

 [StoreTableSize arr val; arr-->0 = val;];

then you can replace ourPets-->0 = 3; with StoreTableSize(ourPets,3); to perform the
assignment without upsetting the compiler.

The alternative technique is to drop into assembly language -- slightly more efficient, slightly
more trouble. The code you need is one of these:

 @storeb arr 0 val; ! arr->0 = val (Z-machine)
 @storew arr 0 val; ! arr-->0 = val (Z-machine)
 @astoreb arr 0 val; ! arr->0 = val (Glulx)
 @astore arr 0 val; ! arr-->0 = val (Glulx)

More information
in the DM: §2.4

http://www.inform-fiction.org/manual/html/s2.html#s2_4

 11 · Tips and Techniques (advanced)

 183

Can I prompt the player to key in some information?

As the DM4 says, Inform's support for reading from the keyboard is
fairly limited. If you wish to bypass the parser and handle keyboard
input directly, you've only two choices, and both are imperfect: you can
use the read statement (or the @aread assembly language statement) to input a line of
text, or the @read_char assembly language statement (or the KeyCharPrimitive()
routine, which also works with Glulx) to accept a single character:

• read puts a line of characters into a buffer, displaying each character as it is typed,
and handling all keystokes until the player terminates the input by pressing the
Return key. Good news: the Backspace key can be used to correct typing mistakes.
Bad news: all alphabetic characters are converted to lower case.

• @read_char returns a single keystroke, without displaying anything. Good news: no
case conversion takes place. Bad news: you can echo the character back to the
player, but you can't Backspace to erase a character once you've echoed it.

If you're asking the player to key in her name, location or other relatively lengthy string,
then on balance it's probably more important to offer the editing convenience of Backspace
than it is to maintain the case of what she types. So, here's a routine, and its Glulx
equivalent, to read a line of characters from the keyboard. Note that the characters are
placed in a buffer array -- one whose first word contains the number of characters that have
been typed, and whose subsequent bytes contain those characters. The routine returns the
number of typed characters:

 #Ifdef TARGET_ZCODE;

 [KeyLine buf max;
 buf->0 = max;
 buf->1 = 0;
 read buf 0;
 buf->0 = 0;
 return buf-->0;
];

 #Ifnot; ! TARGET_GLULX

 [KeyLine buf max;
 glk($00D0, gg_mainwin, buf+WORDSIZE, max, 0); ! request_line_event
 while (true) {
 glk($00C0, gg_event); ! select
 if (gg_event-->0 == 3 && gg_event-->1 == gg_mainwin) break;
 }
 buf-->0 = gg_event-->2;
 return buf-->0;
];

 #Endif; ! TARGET_

Here's how you use the routine to ask the player to type in her name:

 Constant playerName_SIZE 20;
 Array playerName buffer playerName_SIZE;

 do
 print "What's your name? ";
 until (KeyLine(playerName, playerName_SIZE));

The do loop repeats the prompt until the player types something. And here's a routine to
display the name:

More information in
the DM: §2.5 §42

http://www.inform-fiction.org/manual/html/s2.html#s2_5
http://www.inform-fiction.org/manual/html/s42.html

11 · Tips and Techniques (advanced)

 184

 [PrintString buf
 i;
 for (i=0 : i<buf-->0 : i++)
 print (char) buf->(i+WORDSIZE);
];

You can use this either as a printing routine, or as a print rule:

 print "Hello, ";
 PrintString(playerName);
 ".";

 "Hello, ", (PrintString) playerName, ".";

It's time to think about case conversion; the current effect (on the Z-machine) isn't quite
right:

 What's your name? Mary Jane
 Hello, mary jane.

This routine capitalises the first letter of each word in the string -- suitable if the string is a
name (Paul O'Brian, Jean-Paul Satre) or a location (Weston-Super-Mare, Los Angeles):

 [CapitaliseString buf
 i c flg;
 for (i=0,flg=true : i<buf-->0 : i++) {
 c = buf->(i+WORDSIZE);
 if (c >= 'a' && c <= 'z') {
 if (flg) buf->(i+WORDSIZE) = UpperCase(c);
 flg = false;
 }
 else
 flg = true;
 }
];

Here's how to test whether two buffer strings are identical:

 [CompareStrings bufA bufB
 i;
 if (bufA-->0 ~= bufB-->0) rfalse;
 for (i=0 : i<bufA-->0 : i++)
 if (Lowercase(bufA->(i+WORDSIZE)) ~= LowerCase(bufB->(i+WORDSIZE)))
 rfalse;
 rtrue;
];

And finally, all of the routines working together:

 Constant playerName_SIZE 20;
 Array playerName buffer playerName_SIZE;
 Array extraName1 buffer "Roger";
 Array extraName2 buffer "Sonja";

 do
 print "What's your name? ";
 until (KeyLine(playerName, playerName_SIZE));
 CapitaliseString(playerName);
 if (CompareStrings(playerName, extraName1) ||
 CompareStrings(playerName, extraName2))
 "Welcome, oh honoured one.";
 else
 "Hello, ", (PrintString) playerName, ".";

Note, in passing, that our "What's your name" prompt ends with a "? "; you could also use
">> ", but it's best to prevent confusion with the parser's prompt by not using just "> ".

 11 · Tips and Techniques (advanced)

 185

How do I put single characters into the dictionary?

The most common way of adding to the dictionary is via an object's name property. A
typical name property looks like this:

 name 'xray' 'x-ray' 'camera' 'machine',

but if you want to add just one character, you have to be a little devious. For example, to
add a dash on its own you can't simply include '-' in the list, because single characters in
single quotes are always treated as ZSCII character constants (even in name properties,
where that makes no logical sense). So instead, use any of these:

 name '-//' ...
 name '@{2D}//'...
 name "-" ...

in which 2D is the Unicode hexadecimal value for a dash. The first of those three forms is
generally preferred, except where the character you're trying to add is a forward slash. In
that case, use either of the other two forms:

 name '@{2F}//' ...
 name "/" ...

Why doesn't 'my' work in a name property?

The parser treats MY (also HIS, HER, ITS and THEIR) as special descriptors, in roughly the
same way as THE, A and SOME are handled automatically. This works nicely most of the
time; consider a simple piece of code:

 Object -> "red hat"
 with name 'red' 'hat',
 has clothing;

 Object -> "blue hat"
 with name 'blue' 'hat',
 has clothing;

Here, you can see how MY HAT is taken to mean the hat in the player's possession (and by
implication, HAT without MY means any hats not being held):

 You can see a red hat and a blue hat here.

 >GET HAT
 Which do you mean, the red hat or the blue hat?

 >RED
 Taken.

 >EXAMINE HAT
 (the blue hat)
 You see nothing special about the blue hat.

 >EXAMINE MY HAT
 You see nothing special about the red hat.

Sometimes, though, you'd like MY to reflect ownership rather than current possession.
Perhaps the blue hat is a family heirloom or a badge of office: you want to refer to it as MY
HAT whether or not you're holding it. There's slightly more to this than just adding 'my' to
the blue hat's name property; you also need to allow for the parser's automatic handling
(which consumes the MY before considering the words listed in name). A tiny parse_name
property does the trick:

11 · Tips and Techniques (advanced)

 186

 Object -> "blue hat"
 with name 'my' 'blue' 'hat',
 parse_name [;
 if (parser_action == ##TheSame) return -2;
 if (indef_type & MY_BIT) wn--;
 return -1;
],
 has clothing;

And now you get this:

 >GET RED HAT
 Taken.

 >EXAMINE HAT
 (the blue hat)
 You see nothing special about the blue hat.

 >EXAMINE MY HAT
 You see nothing special about the blue hat.

 >EXAMINE RED HAT
 You see nothing special about the red hat.

Note that this still leaves MY referring to objects in your possession if there's no match
against a name property. If you think that'll be confusing, you can disable it by adding to
your Initialise():

 LanguageDescriptors-->1 = 'this';

How can the player input numbers bigger than 10000?

One of the standard grammar tokens is number, which matches any
decimal value in the range 0..10000. Sometimes you may need to use
values larger than this, or less than zero, so here's a general parsing
routine AnyNumber(), based on Exercise 92 in the DM4, which works with
the full range of decimal numbers -- and their binary and hexadecimal
equivalents -- for both Z-machine and Glulx.

 #Ifdef TARGET_ZCODE; ! decimal range is -32768 to 32767
 Constant MAX_DECIMAL_SIZE 5;
 Constant MAX_DECIMAL_BASE 3276;
 #Ifnot; ! TARGET_GLULX ! decimal range is -2147483648 to 2147483647
 Constant MAX_DECIMAL_SIZE 10;
 Constant MAX_DECIMAL_BASE 214748364;
 #Endif; ! TARGET_

 [AnyNumber wa we
 sign base digit digit_count num;

 if (wa == 0) { wa = WordAddress(wn); we = WordLength(wn); }
 we = wa + we;
 sign = 1; base = 10;
 if (wa->0 == '-') { sign = -1; wa++; }
 else {
 if (wa->0 == '$') { base = 16; wa++; }
 if (wa->0 == '$') { base = 2; wa++; }
 }

More
information in
the DM: §31

http://www.inform-fiction.org/manual/html/s31.html

 11 · Tips and Techniques (advanced)

 187

 if (wa >= we) return GPR_FAIL; ! no digits after -/$
 while (wa->0 == '0') wa++; ! skip leading zeros
 for (num=0,digit_count=1 : wa<we : wa++,digit_count++) {
 switch (wa->0) {
 '0' to '9': digit = wa->0 - '0';
 'A' to 'F': digit = wa->0 - 'A' + 10;
 'a' to 'f': digit = wa->0 - 'a' + 10;
 default: return GPR_FAIL;
 }
 if (digit >= base) return GPR_FAIL;
 switch (base) {
 16: if (digit_count > 2*WORDSIZE) return GPR_FAIL;
 2: if (digit_count > 8*WORDSIZE) return GPR_FAIL;
 10:
 if (digit_count > MAX_DECIMAL_SIZE) return GPR_FAIL;
 if (digit_count == MAX_DECIMAL_SIZE) {
 if (num > MAX_DECIMAL_BASE) return GPR_FAIL;
 if (num == MAX_DECIMAL_BASE) {
 if (sign == 1 && digit > 7) return GPR_FAIL;
 if (sign == -1 && digit > 8) return GPR_FAIL;
 }
 }
 }
 num = base*num + digit;
 }
 parsed_number = num * sign;
 wn++;
 return GPR_NUMBER;
];

In accordance with the rules governing general parsing routines, AnyNumber() returns
either the constant GPR_NUMBER if it matches a valid number (whose value is in the library
variable parsed_number), or the constant GPR_FAIL if there is no match. You might use
anynumber in a replacement for the standard SET grammar (note that special is an
undocumented token, described in 1996 by the DM3 as "obsolete and best avoided", which
matches either a decimal value or a dictionary word)

 Verb 'set' 'adjust'
 * noun -> Set
 * noun 'to' special -> SetTo;

with a version accepting the full range of numbers:

 Extend 'set' replace
 * noun -> Set
 * noun 'to' anynumber -> SetTo;

You could implement addition and subtraction in a similar manner:

 [IncreaseSub; "You can't increase that!";];

 [DecreaseSub; "You can't decrease that!";];

 Verb 'increase' 'increment' 'inc'
 * noun 'by' anynumber -> Increase;

 Verb 'add'
 * anynumber 'to' noun -> Increase reverse;

 Verb 'decrease' 'decrement' 'dec'
 * noun 'by' anynumber -> Decrease;

 Verb 'subtract'
 * anynumber 'from' noun -> Decrease reverse;

11 · Tips and Techniques (advanced)

 188

The job of turning a string of decimal digits into a single numeric value is handled by the
library routine TryNumber(), which is where the 0..10000 limit originates. One way of
bypassing this limitation is by defining a ParseNumber() entry point routine, but this turns
out to be slightly less useful than you'd think: if ParseNumber() rejects a string like
"99999" (because 32767 is the Z-machine's limit) then TryNumber() accepts and processes
it, returning the truncated value 10000.

An alternative approach is simply to Replace TryNumber() with your own code. A definition
which leverages the AnyNumber() routine shown earlier is:

 [TryNumber wordnum
 x y z;

 ! accept "one" to "twenty"
 y = wn; wn = wordnum; z = NextWord(); wn = y;
 z = NumberWord(z); if (z) return z;

 ! if provided, use ParseNumber() entry point
 x = WordAddress(wordnum); y = WordLength(wordnum);
 z = ParseNumber(x, y); if (z) return z;

 ! accept any integer value
 if (AnyNumber(x, y) == GPR_FAIL) return -1000;
 wn--;
 return parsed_number;
];

The advantage of this approach is that the (very nearly) full range of parsed numeric values
is now available everywhere using the existing number token, without you needing to
replace verb grammars or make other code changes. The disadvantage is that "-1000" can't
be input, since that's the value which TryNumber() returns to indicate a non-numeric
value, and we have to retain this for compatibility with existing library code (the use of
anynumber as a grammar token avoids this problem).

	Introduction
	Contents
	1 · Setting the Scene
	So, what is Inform?
	Where do I begin?
	How is Inform related to Infocom?
	When did Inform appear?
	What's the best way to learn Inform?
	Does anybody teach Inform?
	How popular is Inform?
	Where are all these games you mention?
	Can I play Inform games on my handheld?
	I've seen Inform games played on the web... can I do that?
	I'm blind -- is there any way I can play Inform games?

	2 · Preparing to program
	What do the various file extensions like 'Z5' signify?
	Where should I store the various Inform files?
	How do I compile on a PC running XP?
	How do I compile on a Mac running OS X?
	What can I expect when I try to compile my program?
	Why does my game start off so big?
	How do I change the compiler settings?
	Does it matter how I structure my game file?
	Does it matter how I organize my object definitions?
	Does it matter how I lay out my code?
	How does a game begin?
	How does a game end?
	Is there a good Integrated Development Environment?
	How do I use Modules?
	Can I write a game in French?

	3 · Learning The Lingo
	When are upper and lower case differentiated?
	When do I use commas (,) and semicolons (;)?
	When do I use apostrophes (') and quotes (")?
	What does a string "..." as a statement by itself mean?
	What are the circumflex (^) and tilde (~) characters used for?
	How do I concatenate strings?
	What's the difference between MyRoutine and MyRoutine()?
	What's the difference between a Directive and a Statement?
	What's the difference between Include and #Include?

	4 · Dabbling in Data
	How do constants and variables differ?
	What can be stored in a variable?
	What about fractions and decimals?
	How do global and local variables differ?
	What does an array provide?
	What's an 'unsigned' number?
	What exactly are 'true' and 'false'?
	How do I return data values from a routine?
	Where do 'random' numbers come from?

	5 · Operating on Objects
	Is a 'room' a special sort of object?
	How does Inform distinguish nouns from adjectives?
	When should I use scenery/static/concealed attributes?
	How can I tell that one object is 'within' another?
	How do I get rid of an object in mid-game?
	What are the various 'description' properties for?
	How are plural objects managed?
	Why do my pronouns keep changing?
	How do I define a new object property?
	How do I use my new object property?
	Do I need to understand private properties?
	How do I define a new object attribute?
	How can I use individual properties as attributes?
	What does class inheritance do for me?
	When is a Dynamic class useful?
	How can I reconfigure the Player Character (PC)?
	Why does my game crash when I use move in an objectloop?
	Can I loop through all of an object's dependents?

	6 · Verbal Versatility
	How do I define a new verb?
	When should I use before/react_before properties?
	Where do life and orders fit in?
	Surely the syntax of these properties is a little odd?
	How do I change an existing verb?
	Can I remove an existing verb?
	Why are actions labelled Group 1, Group 2 or Gro
	How do I detect the player entering a room, or trying to leave?
	Where have I been?
	How can I parse a number?
	Which action is triggered by each verb?
	Can I distinguish SIT ON BED from LIE ON BED?
	Which verb did the player use?
	How do 'meta' verbs work?

	7 · Bothered By Bugs
	What can I expect when I run my first program?
	Help! What's wrong with my code?
	Why do I get spurious 0s and 1s in my printout?
	What's the difference between Squared(x) and (Squared) x?
	How can I make the debugging process easier?
	Why does my game mention "a apple"?
	What were Vile Zero Errors From Hell?
	I've found an Inform problem -- what should I do?

	8 · History And Hereafter
	Where's this Archive that's mentioned so often?
	Glulx? What's that all about?
	Who, or what, is Platypus?

	9 · Worldly Woes \(advanced\)
	How can I get rid of those damn walls?
	How can I embed object details in a room's description?
	Is it possible to disable TAKE ALL?
	Can I avoid printing "(which is empty)" after a container?
	Can I avoid printing "(the objectname)" after certain commands?
	How does the list-maker work?
	Could you explain what "in scope" means?
	What's the easiest way to shine light everywhere?
	Why is water so difficult to model?
	How does everybody know where the north is?

	10 · Inside Information \(advanced\)
	What's a Library entry point?
	Where are all those Library files used?
	Can I use Inform without the standard Library files?
	What's all this stuff about message-passing?
	What actually happens at the start and end of each turn?
	What's the difference between a Daemon and a Timer?
	What's the difference between a Daemon and an each_turn property?
	Why don't my daemons run at the start of a game?
	How do I compile a game as Version 3?
	Can I combine a game and an interpreter in a single file?
	Could you explain how character sets are handled?
	Little-used features: what's a low string?
	Little-used features: what's an abbreviation?
	Little-used features: what's a fake action?
	How is the parse array structured?
	How are the standard print rules implemented?

	11 · Tips and Techniques \(advanced\)
	What's the associativity of ~/~~?
	How do I write an XOR function?
	Can I use expressions in <...>?
	Is there a Library routine to print direction names?
	Can I introduce a short time delay?
	Why can't I address "Dr.Jekyll" or "Mr.Hyde"?
	How do I right-align printed numbers?
	Can an 'achieved task' have a negative score?
	Are the points awarded by a 'scored' object adjustable?
	ChooseObjects() is messing up TAKE ALL. What can I do?
	Can ChooseObjects() tell if it's evaluating noun or second?
	How can I change the size of a string or table array?
	Can I prompt the player to key in some information?
	How do I put single characters into the dictionary?
	Why doesn't 'my' work in a name property?
	How can the player input numbers bigger than 10000?

